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ABSTRACT

Scholarly search systems greatly aid the deep understanding of
scholarly data and facilitate the research activities of scholars for
scientific studies. Though a number of such systems have been
developed, most of them either support rankings of limited search
of entities or provide only basic ranking metrics. These existing
systems also mainly adopt RDBMSs as their storage such that the
linked feature of scholarly data is not fully exploited. In this study,
we design and develop a novel scholarly search system Athena.
(1) It supports four types of scholarly entity searches: articles, au-
thors, venues and affiliations, and is equipped with five ranking
metrics, including three traditional metrics and two comprehen-
sive importance ranking metrics. (2) It also provides profiling of
scholarly entities. (3) It further utilizes a graph storage to directly
leverage the linked feature for speeding up the processing of com-
plex queries. We demonstrate the advantages of Athena at scholarly
search, profiling, graph storage and ranking quality.
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1 INTRODUCTION

The continuous advancements in science and engineering have
contributed to an ever-growing body of scientific literature. To
aid the deep understanding of scholarly data and to facilitate the
research activities of scholars for scientific studies, a number of
scholarly search systems have been developed, which essentially
provide searches and profiling of scholarly entities (articles, authors,
venues and affiliations).

Given a query of a specific research topic, Google Scholar (https:
//scholar.google.com), Semantic Scholar (https://www.semanti-
cscholar.org) and CiteSeerX [1] only rank scholarly articles, while
AMiner [8] further provides author ranking. Besides, the supported
ranking metrics in these systems are either simple (e.g., time and rel-
evance) or biased to older articles (e.g., citation counts). AceMap (7]
and Microsoft Academic (https://academic.microsoft.com) do rank
heterogeneous scholarly entities, i.e., articles, authors, venues and
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affiliations. However, AceMap simply ranks those entities based
on the numbers of associated articles regarding the query, and Mi-
crosoft Academic does so by inferring query intent (based on the
search log from Bing). To conclude, these existing systems may face
with limitations when users perform entity searches.

Besides, storage is another key factor for scholarly search sys-
tems, due to the large volume of data and the complex relationships
between entities, e.g., Microsoft Academic Graph (MAG) contains
126/529 million articles/citations [6]. Observe that scholarly entities
are inherently linked. Existing systems mainly adopt RDBMSs to
store and manage scholarly data. MySQL is utilized in CiteSeerX,
Aminer and Acemap, and Microsoft Academic adopts SQL Server
while the storage of Google Scholar and Semantic Scholar are not
reported. Hence they cannot fully exploit this linked feature, and
become inferior when answering complex scholarly queries [3]. For
instance, finding the top-k fields of study of an author in RDBMSs
could result in bottlenecks for scholarly search systems.

Contributions. In this study, we design and develop a scholarly
search system Athena to aid the deep understanding of scholarly
data and to facilitate the research activities of scholars.

(1) Athena supports four types of entity searches with five ranking
metrics. Besides the traditional ranking metrics (relevance, publish
time and citation counts), we incorporate two advanced ranking
metrics (importance and relevant importance), which has proven
effective on ranking articles [2].

(2) Athena also supports profiling scholarly entities, e.g., author
profiling with research interest evolution and affiliation profiling
with author and field of study visualization.

(3) Athena utilizes graph database Neo4j (https://neo4j.com) for
storage. To do so, we carefully design a Neo4j schema to model
scholarly data as a property graph, and incorporate Lucene index
to speed up query processing.

(4) The advantages of Athena are demonstrated from four respects:
scholarly search, profiling, graph storage and ranking quality.

Organization. The rest of this paper is organized as follows. Sec-
tion 2 introduces scholarly search and ranking model. Our Athena
system is presented in Section 3, followed by demonstrations in
Section 4 and conclusions in Section 5.

2 SCHOLARLY SEARCH AND RANKING

In this section, we first introduce scholarly search, and then present
the ranking model that lays its core foundation.

2.1 Scholarly Search

Our Athena system facilitates the research activities of scholars by
providing four types of entity searches as follows.
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Table 1: Functions provided by Athena and existing scholarly search systems

Scholarly Search Ranking Metrics Article-Coupled Ranking Visual Profiling
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Article search. Given a set of keywords, Athena returns a sorted
list of articles whose titles contain the given keywords. In the mean-
time, it also returns three sorted lists of authors, venues and affilia-
tions associated with the returned articles.

Author, venue and affiliation searches. Given a (partial) name
of an author, venue or affiliation, Athena returns a sorted list of
authors, venues or affiliations, respectively, that contain the given
(partial) name.

2.2 Scholarly Article Ranking

Athena provides five metrics to support article search.

Citation counts and publish time. Articles are simply sorted
based on their citation counts and publish time.

Importance. This metric comes from our recently developed SARank
(please refer to [2] for details). The importance of an article is de-
fined as a combination of its prestige and popularity, where prestige
is computed by a novel Time-Weighted PageRank, and popularity is
the sum of its citation freshness. To assign newly published articles
reasonable ranking scores, it further assembles the importance of
citations, authors and venues to derive the final ranking.

The above three are for query independent ranking, and we in-
troduce another two metrics for query dependent ranking.
Relevance. This metric enables to rank scholarly articles in terms
of the semantic correlation between their titles and given queries
(keywords). Nowadays Word2vec [4] has become the de facto stan-
dard to capture semantics, and we utilize Word2vec to evaluate
semantic relevance as follows.

rel(a,Q) = Z Z

tea.T geQ

t-q
[Itl] flall”

Here a.T and Q are the sets of words (excluding stop words)
in the title of an article a and the query, respectively, and t and
q are the corresponding embeddings of words ¢ and q. Note that
word embeddings are pre-trained with external corpus, which can
be easily extended to use the abstracts and full texts of scholarly
articles to evaluate the semantic relevance when they are available.

1)

Relevant importance. The previous importance metric does not
consider the closeness of the articles regarding given queries. This
metric is to rank scholarly articles by combining the semantic rele-
vance and importance metrics. More specifically, we first normalize
the computed relevance (resp. importance) score by scaling with
the maximum relevance (resp. importance) score in the resulting
article set, and we then define the relevant importance score.

rImp(a, Q) = a - rely(a, Q) + (1 — ) - impy/(a), (2)
where rel,(a, Q) and imp, (a) are the normalized semantic relevance
score and importance score, and « is a regularization parameter,
typically set to an empirical value in [0.2, 0.4].

, RE.IM stand for article, author, venue, affiliation, relevance, importance and relevant importance, respectively.

2.3 Author,Venue and Affiliation Ranking

For authors, venues and affiliations, Athena provides stand-alone
ranking and article-coupled ranking.

Stand-alone ranking. To support author, venue and affiliation
searches, Athena ranks authors, venues and affiliations with the
sum of the query independent ranking scores of all their associated
articles. Further, when sorting entities by publish time, it uses an
exponentially decayed score eTa=T0 to evaluate the research active-
ness of an entity, where T, is the publish year of an article a, and
Tp is the current year.

Article-coupled ranking. To support scholarly entity search, Athena
ranks authors, venues, and affiliations regarding the resulting ar-
ticles of a specific scholarly entity query, along the same lines as
stand-alone ranking. This helps to answer questions such as which
authors, venues or affiliations are the most authoritative ones in
the query related fields of study.

The search and ranking functions of Athena and existing systems
are summarized in Table 1.

3 ATHENA SYSTEM

In this section, we introduce our Athena system. As shown in Figure
1(a), Athena consists of three main components, i.e., storage, query
engine and function modules. Below the storage component is a
query independent ranking module that enriches the scholarly data
with pre-computed query independent ranking scores, there is
another query dependent ranking module inside the query engine,
and the two function modules support visual analyses for users.

3.1 Schema Design

Graph database Neo4;j is adopted for storage in Athena. To do so,
we need to design a schema that abstracts the entities and linked
structures (e.g., citation, authored-by). We follow two principles for
schema design: (1) nodes for entities and relationships for linked
structures, and (2) trading space for query efficiency if affordable
and possible.

The schema is presented in Figure 1(b), where the texts near
nodes and relationships represent the properties of entities and
linked structures, respectively. It contains seven basic types of
nodes including Article, Author, Affiliation, Venue, FOS (field of
study), ConlIns (conference instance in each year) and Year. In ad-
dition, it further incorporates an artificial type of nodes, i.e., AAA
representing article-author-affiliation tuples. Here we trade extra
space for query efficiency, i.e, an author and her/his affiliations can
be retrieved in one query. As another space-efficiency trade-off, we
also use extra space to maintain certain properties of article nodes:
conference ID, journal ID and year. Our schema also forms a total
of nine types of relationships, one of which, i.e., :VenueScore, has a
score property.
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Figure 1: System design of Athena

3.2 Graph Storage

Following the above schema, we maintain scholarly data as a huge
property graph, e.g., the one of MAG [6] has more than 1.03 billion
nodes and 1.93 billion relationships.

First, based on the original scholarly data, the query independent
ranking module pre-computes those query independent ranking
scores: citation counts of articles, importance scores of articles,
authors, venues and affiliations [2]. These scores are assigned as
properties to the corresponding nodes. Moreover, both citation
counts and importance scores support incremental computation [2],
which are easy to be dynamically maintained once new scholarly
data arrives.Second, to facilitate query processing on the billion-
scale property graph, Lucene index is utilized for initial entity
lookups. Specifically, we create fulltext indices for article titles,
author names, venue names and affiliation names. These enable to
efficiently find articles, authors, venues and affiliations whose titles
or names contain specific keywords.

3.3 Graph Query Engine

Complex scholarly queries, such as finding the top-k fields of study
of an author, inevitably involve with multiple types of entities.
These are implemented with joins in RDBMSs, which may become
a bottleneck for query processing. Differently, Athena executes
graph queries on the property graph to answer scholarly queries.
When users involve scholarly searches, Athena executes searches
with Neo4j Cypher queries.

When applicable, the Cypher query also includes the entity IDs
returned from the Lucene index. Relevance and relevant importance
rankings given by the query dependent ranking module may also be
included in the Cypher query if needed. Based on the final Cypher
query, Neo4j query engine generates a query plan and processes it
on the property graph after proper parsing and semantic analyses.

Figure 2 gives an example workflow of the query engine when a
user wants to search the top scholarly articles about “data mining”
ranked by relevant importance. The fulltext index is firstly used to
get the related article IDs on “data mining” (lines 3-4). The query
dependent ranking module then calculates the relevant importance
scores of those related articles, and the top-k article IDs are further
identified (lines 5-6). Based on the complete Cypher query, the

GraphDatabaseService graphDB = new GraphDatabaseFactory()... ;
try ( Transaction tx = graphDB.beginTx() ) {
IndexHits <Node> hits = db.index().forNodes ( "fullTextIndex" )
.query( "title: data AND title: mining" );

List <ReleImpScore> listScore = calcRelelmp(hits, "data mining");
List <String> arIDs = getTopKIDs(listScore);
Result result = graphDB.execute("

WITH {arIDs} AS IDs UNWIND IDs AS perID
9. MATCH (ar:Article)-[:ArToAAA]->(r)-[:AAAToAu]-(au: Author)
10. WHERE ar.arID = perID
11. WITH ar.title, COLLECT (au.auName), SIZE(()-[: ArRef]->(ar)) AS cite, ...
12. RETURN arID, title, authors, cite, ...");
13.  tx.success();
14. }

Figure 2: Example workflow of Athena query engine
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Neo4j query engine finally generates the query plan, executes it on
the property graph, and returns the results (lines 7-12).

3.4 Function Modules

Scholarly entity ranking and scholarly entity profiling are the two
function modules that collect the ranked scholarly entities returned
from the back-end, and present a visual analysis to users. More
specifically, Athena utilizes RESTful APIs and Echarts (http://echarts
.baidu.com) for the scholarly ranking and profiling. Further, Athena
provides users with the APIs of the ranking and profiling functions.

4 ATHENA DEMONSTRATION

We demonstrate our Athena system from four aspects: (1) scholarly
search, (2) author profiling, (3) performance comparison between
Neo4j and RDBMSs, i.e., MySQL and SQL Server, and (4) rank-
ing quality evaluation by both case studies and comparisons with
PageRank and FutureRank [5].

(1) Scholarly search. Figure 3 presents the scholarly entity rank-
ings under query “data mining”. The ranking metrics are displayed
on the left hand side. Note that Athena also supports queries within
a specific range of years. When sorted by relevant importance, the
rankings of articles and the associated entities (authors, affiliations,
journals and conferences) are shown in the middle and on the right
hand side. Further, it is worth pointing out that users can directly
query entities by typing their names in the search box.

(2) Author profiling. Figure 4 gives an example of author profiling
for Prof. Jiawei Han. First, the affiliation and number of published
articles and citations are presented. Second, a word cloud is given to
summarize the author’s fields of study, where the size of a word rep-
resents its importance in the author’s research career. For instance,
“data mining” and “machine learning” are identified as Prof. Jiawei
Han’s most important fields of study. Third, Athena illustrates the
details of the evolution of research interests, shown at the bottom
of Fig. 4, and users can find the relevant articles in each field of
study. Finally, functions such as co-authors analyses and statistics
by times are provided in author profiling.

(3) Performance evaluation. We compare the query performance
of the adopted graph database Neo4j with traditional RDBMSs, i.e.,
MySQL and SQL Server. More specifically, we consider three widely
used types of queries in Athena, i.e., (i) given an article ID, finding
its title and authors, (ii) given an author ID, finding her/his top-10
most important articles and (iii) given an author ID, finding her/his
fields of study. Note that the numbers of joins are (2, 4, 5) for the
three types of queries in MySQL, respectively.
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Figure 4: Demonstration of author profiling

We test a scenario for searching “good” articles. We randomly
select 1000 articles and 100 authors whose citation counts and
published articles are no less than 100 and 50, respectively, execute
three times and compute the average processing time. As shown
in Table 2, Neo4j performs consistently faster than MySQL and
SQL Server, which is on average (14.8%, 45.3%, 55.5%) and (15.5%,
22.4%, 42.8%) respectively faster for the three types of queries. Thus,
structure-aware Neo4j is more efficient than RDBMSs for such
scholarly analyses, especially for queries with more join operations.

(4) Ranking quality evaluation. Firstly, we evaluate ranking
quality by comparing with PRank (PageRank) and FRank (Futur-
eRank). For both algorithms the damping parameter d and the
iteration threshold € were fixed to 0.85 and 1078, respectively. Ag-
gregating parameters «, 8, y and p were set to 0.7, 0.1, 0.2 and -0.2
for FRank following [5]. Note that the ranking algorithms are not
reported in commercial systems such as Google Scholar, and we can
hardly compare with them [2]. To be specific, we test 110 queries in
the field of computer science, and ask 3 computer science students
(2 phD candidates and 1 master student) to label the ranking results.
As a result, P@5 (precision at top 5) of PRank, FRank and Athena

strate that considering temporal factor of articles and assembling
the importance of citations, authors and venues do make ranking
results more reasonable. However, the results are not presented due
to space limitation. To conclude, Athena provides a more effective
ranking component for searching influential articles.

5 CONCLUSIONS

In this paper, we have designed, developed and demonstrated a
novel scholarly search system Athena to facilitate the research ac-
tivities of scholars. Athena has supported rankings of four types of
scholarly entities with five metrics, and provided profiling functions
to enhance the understanding of scholarly data. Further, Athena
has adopted a popular graph database Neo4;j as the storage solution
for efficient query processing on billion-scale scholarly data.
Video is available at http://mashuai.buaa.edu.cn/Athena.mp4.
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