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Abstract—Understanding human mobility patterns at the point-of-interest (POI) scale plays an important role in enhancing business

intelligence in mobile environments. While large efforts have been made in this direction, most studies simply utilize POI check-ins to

mine the concerned mobility patterns, the effectiveness of which is usually hindered due to data sparsity. To obtain better POI-based

human mobility for mining, in this paper, we strive to directly annotate the POIs associated with raw user-generated mobility records.

We propose a neural context fusion approach which integrates various context factors in people’s POI-visiting behaviors. Our approach

evaluates the preference and transition factors via representation learning. Notably, we incorporate an attention mechanism to deal

with the randomized transitions in raw mobility. The domain knowledge factors, i.e., distance, time and popularity, remain effective and

our approach further includes them from a data-driven perspective. Factors are automatically fused with a feed-forward neural network.

Furthermore, we exploit a multi-head architecture to enhance the model expressiveness. Using two real-life data sets, we conduct our

experimental study and find that our approach consistently outperforms the state-of-the-art baselines by at least 32 percent in

accuracy. Besides, we demonstrate the utility of the obtained POI-based human mobility with a POI recommendation example.

Index Terms—Raw mobility annotation, point-of-Interest, neural network, business intelligence

Ç

1 INTRODUCTION

HUMAN mobility is the movements of human beings in
space and time [1]. Based on people’s diverse emphases

of movements, human mobility can be roughly classified into
three categories: location-based, activity-based and point-of-
interest (POI) based. The location-based focuses on the space
and time aspects [1], [2], [3], [4], and the activity-based essen-
tially explains the purposes behind people’s moves [5], [6],
[7], [8], both of them have greatly enhanced our understand-
ing of urban dynamics. Besides the above two, effort has also
been paid to the acquisition of POI-based humanmobility [9],
[10], [11], i.e., people’s movements between POIs. Intuitively,
POIs contain rich semantics and play an important role in
mobile services and business intelligence. Thus, POI-based
human mobility not only is essential for mobility-related
applications, e.g., weekly mobility pattern identification [12],
city planning [13], epidemic diffusion analysis [14] and
resource allocation [15] but also remains fundamental in POI-
centric tasks, such as POI and trajectory recommenda-
tions [16], [17] and POI demand forecasting [18].

Check-in records are a good and off-the-shelf source of
POI-based human mobility [17], [19], [20], [21]. However,
they are sparse by nature, from which the downstream
applications may suffer. For instance, the Foursquare data
set collected by [22] contains 227,428 check-ins of 1,083 users
in a span of ten months in New York City. Note that inactive
users who have less than 3 check-ins per week have already
been filtered out. Even though, each user still only has 0.675
check-in per day on average, which is far from enough for
recording our daily movements. Worse still, Wu and Li [10]
experimentally verifies that temporally sparse mobility may
not exhibit any significant transitional relationships. These
results affect the basis of sequential modeling for human
mobility recorded by check-ins.

To obtain better POI-based human mobility, in this paper
we study raw mobility annotation, aiming to directly anno-
tate the raw mobility records (i.e., user-generated timestamped
locations) with associated POIs. Observe that: (i) raw mobility
data can be collected with reasonable user participation by
various devices running some mobile services, e.g., Google
Maps or Yelp, and (ii) for any POI check-in, a raw mobility
record can be collected by simply ignoring the POI. In this
sense, raw mobility data is much easier to collect and can
track more time-resolved individual locations compared
with check-ins. Moreover, direct annotation could help to
alleviate the noise introduced by fake check-ins [23]. There-
fore, proactive acquisition of POI-based human mobility
from user-generated timestamped locations can provide
both densely-sampled trajectories and reliable semantics to
support numerous potential applications.

This task also remains challenging since individuals’
POI-visiting behaviors are influenced by various complex
contexts and turn out to be more stochastic. More specifi-
cally, raw mobility records are usually more adequate than

� R. Hu and S. Ma are with the SKLSDE Lab, Beihang University and the
Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beijing 100191, China. E-mail: {hurenjun, mashuai}@buaa.edu.cn.

� J. Zhou and X. Lu are with the Business Intelligence Lab, Baidu Research,
National Engineering Laboratory of Deep Learning Technology and Appli-
cation Haidian District, Beijing 100193, China.
E-mail: {zhoujingbo, luxinjiang}@baidu.com.

� H. Zhu is with the Talent Intelligence Center, Baidu Inc., Beijing 100085,
China. E-mail: zhuhengshu@baidu.com.

� H. Xiong is with the Management Science and Information Systems
Department, Rutgers Business School, Rutgers University, Newark, NJ
07102 USA. E-mail: hxiong@rutgers.edu.

Manuscript received 18 July 2019; revised 6 Mar. 2020; accepted 12 June 2020.
Date of publication 19 June 2020; date of current version 3 Dec. 2021.
(Corresponding author: Shuai Ma.)
Digital Object Identifier no. 10.1109/TMC.2020.3003542

226 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 1, JANUARY 2022

1536-1233 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Ant Financial. Downloaded on April 21,2022 at 02:39:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1094-6890
https://orcid.org/0000-0002-1094-6890
https://orcid.org/0000-0002-1094-6890
https://orcid.org/0000-0002-1094-6890
https://orcid.org/0000-0002-1094-6890
https://orcid.org/0000-0002-3602-0391
https://orcid.org/0000-0002-3602-0391
https://orcid.org/0000-0002-3602-0391
https://orcid.org/0000-0002-3602-0391
https://orcid.org/0000-0002-3602-0391
https://orcid.org/0000-0002-4050-0443
https://orcid.org/0000-0002-4050-0443
https://orcid.org/0000-0002-4050-0443
https://orcid.org/0000-0002-4050-0443
https://orcid.org/0000-0002-4050-0443
mailto:hurenjun@buaa.edu.cn
mailto:mashuai@buaa.edu.cn
mailto:zhoujingbo@baidu.com
mailto:luxinjiang@baidu.com
mailto:zhuhengshu@baidu.com
mailto:hxiong@rutgers.edu


check-ins. This enables and requires a better exploitation of
personal preferences for visiting POIs. The work in [9] sim-
ply counts the number of previous visits from a user at a
POI to model preference, which might suffer greatly from
data sparsity. While [10] proposes to enforce category-level
consistency in spatially- and temporally-close mobility
records, which is a very strong assumption. Thus, these
strategies are insufficient to support raw mobility annota-
tion. Also observe that preferences for POIs are mutually
influenced between people, which has been largely ignored
in earlier work. Second, transitional patterns, i.e., sequential
patterns of movements, are very likely to exhibit certain ran-
domness in raw human mobility, instead of being strictly
sequential. For instance, people might visit other POIs
within their routine transitional patterns. Such randomized
effect should be considered. Last but not the least, the influ-
ence of distance, time and POI popularity ought to be prop-
erly incorporated. These basic factors play a decisive role in
our daily POI-visiting behaviors.

However, none of existing solutions [9], [10], [11] inte-
grate all the above visiting contexts. Worse still, they model
the complex contexts in simple ways, ignore the random-
ized effect of raw mobility, and combine contexts in pre-
defined manners. To this end, we propose a Neural Context
Fusion approach, namely NCF, to tackling raw mobility
annotation. It enables to capture the complex preference
and transition structures at the fine-grained user, POI, and
region levels. Moreover, it learns to fuse various key context
factors in POI-visiting behaviors in an end-to-end data-
driven manner. To the best of our knowledge, NCF is the
first neural model for mobility annotation.

To be specific, NCF first derives the preference factor via
representation learning (RL). RL refers to the technique of
embedding data points into low-dimensional hidden spaces.
It can effectively reveal the hidden structures in original data,
e.g., the preference relationships between user and POI, and
has already been exploited for human mobility analysis [17],
[19], [24]. For eachuser or POI,NCF learns a vector in a hidden
space such that a pair of user and POI vectors are placed close
if the user has preference for the POI. By this, user vectors can
encode people’s distinct preferences for POIs. As a side effect,
RL also provides a natural way for mutual preference influ-
ence through vectormanipulations in the hidden space.

From a transitional point of view, we notice that the previ-
ous mobility records also offer clues for mobility annotation,
i.e., how likely someone visits a POI given the places she/he
stays earlier. Since rawmobility data only track locations, we
assign locations to road-segmented regions for learning tran-
sitional patterns. The reasons are two-fold. First, regions can
be easily incorporated in the RL framework. Second, the func-
tionality of regions can well encode transitional patterns, e.g.,
residence-to-work. Regions are also embedded in the same hid-
den space as users and POIs. Based on region vectors, NCF
derives two transition factors from the POI and user perspec-
tives, respectively. Also recall that transitions in rawmobility
are randomized. In other words, each of the previous regions
may have a direct impact on the current visited POI. We
adopt an attention mechanism [25] to capture such random-
ness. It automatically determines an importance weight of
each region and computes a weighted sum of region repre-
sentations, which ensures the direct impact of each region.

The remaining distance, time and popularity factors are
inspired by domain knowledge, i.e., people tend to visit
POIs that are close to their locations, active at the visit time
and popular among people. These three factors are data-
driven in our approach. Inspired by data statistics, we adopt
an exponentially-decayed function to evaluate the distance
factor. While the time and popularity factors are estimated
from map search query data, i.e., timestamped search logs
from users to POIs on map services, due to the better POI
coverage compared with POI visit data.

All the above factors are fed into a feed-forward fusion
neural network to compute the visit probabilities of candi-
date POIs. Moreover,NCF exploits a multi-head architecture
such that each head evaluates an independent set of RL fac-
tors. Such an architecture is believed to enhance the expres-
sive power of NCF, as it can learn a distinct POI-visiting
pattern in each head.

To sum up, our main contributions are as follows:

1) We investigate the raw mobility annotation problem
to overcome the limitation of POI check-in data.

2) We propose a neural context fusion (NCF) approach. It
integrates various key context factors in people’s POI-
visiting behaviors and is equipped with a context
fusion neural network and amulti-head architecture.

3) We evaluate NCF using two real-life data sets. We
find that NCF significantly outperforms the state-of-
the-art baselines by at least 32 percent in accuracy
and remains efficient. Moreover, both the context
factors and the multi-head architecture enhance the
effectiveness.

4) We demonstrate the utility of POI-based human
mobility with a POI recommendation example. We
show that, even using a very simple recommenda-
tion strategy, the annotated POIs by NCF can sub-
stantially promote the recommendation accuracy by
at least 11.2 percent.

The rest of the paper is organized as follows. Section 2
introduces raw mobility preprocessing and formalizes the
problem. Our NCF approach is described in Section 3. We
present the experimental study in Section 4, followed by
relatedwork in Section 5 and concluding remarks in Section 6.

2 RAW MOBILITY PREPROCESSING

Raw human mobility cannot be directly annotated as a frac-
tion of records are produced when people are in moving
status. In this section, we introduce how to preprocess raw
human mobility for annotation and formalize our problem.
The notations used in this paper are listed in Table 1.

Let a mobility record x ¼ ðl; tÞ be a pair of location l (lati-
tude and longitude) and time stamp t. Let U and P be the
sets of users and POIs, respectively.

Definition 1 (Trajectory). A trajectory T u of user u 2 U is a
sequence of ordered mobility records generated by user u, i.e.,
T u ¼ ½x1; x2; . . . ; xL�, where L is the length of T u and the time
stamps satisfy t1 < t2 < . . . < tL.

We introduce a notion of stay to distinguish between
mobility records that can or cannot be annotated with POIs.
Let T u½i; j� ¼ ½xi; . . . ; xj� (1 � i < j � L) denote a sub-
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trajectory of T u. And we say a sub-trajectory is a stay if all
mobility records included are spatially and temporally close
and last long enough. In this case, the corresponding mobil-
ity records are very likely to be associated with a POI where
the user visits when generating these records.

Definition 2 (Stay). Given distance, temporal closeness and
spanning thresholds �D, �T and �S , sub-trajectory T u½i; j� is a
stay if (a) distðlk; lijÞ � �D holds for all i � k � j, where lij is
the mean of fli; . . . ; ljg, (b) tkþ1 � tk � �T holds for all
i � k � j� 1, and (c) tj � ti � �S .

Intuitively, distance threshold �D provides tolerance for
positioning errors of daily use devices, temporal closeness
threshold �T is the typical amount of time within which peo-
ple can complete a visit to a POI, and, finally, spanning
threshold �S is the amount of time that we can assure a POI
visit by someone with high confidence. We next illustrate
these concepts with an example.

Example 1. Fig. 1gives a trajectory T u of user u collected
in one day. Assume the diameter of circles in Fig. 1 is
200 meters, �D ¼ 200 meters, �T ¼ 2 hours and �S ¼ 10
minutes. We have the following.

� Sub-trajectories T u½1; 2� and T u½11; 12� are stays
since the included mobility records are spatially
and temporally close and span longer than the
spanning threshold.

� Despite the distance and spanning time, x6–x9
belong to two stays T u½6; 7� and T u½8; 9� since x7
and x8 are not temporally close (i.e., t8 � t7 > �T ).
Note that user u might visit other POIs during
10:00 AM and 2:30 PM.

� Spatiotemporal points x3, x4, x5 and x10 are mov-
ing mobility records. They do not belong to any
stays due to the distance constraint.

Similar to the stay point detection algorithm in [26], we
can identify a set of non-overlapping stays from each T u in
OðLÞ time. The main idea is to enumerate a mobility record
(say xi) and find the longest sub-trajectory T u½i; j� satisfying
the conditions of a stay. If that sub-trajectory does not exist,
turn to xiþ1. Otherwise, identify T u½i; j� as a stay and start
with xjþ1. It is easy to verify that the above process only
needs to scan through the trajectory once.

In most cases, the identified stays are associated with
POIs. For instance, T u½1; 2� in Fig. 1 is generated when u is
at home, T u½6; 7� and T u½8; 9� are annotated with the com-
pany, and T u½11; 12� corresponds to a bar. We thus (i) esti-
mate various context of stays and further (ii) fuse these
context factors to (iii) guide stay annotation with the corre-
sponding POIs (the details will be described in Section 3).
We then obtain the POI-based human mobility, which can
facilitate a broad range of applications. It is noteworthy
that, for a specific setting of the thresholds, the POIs that are
annotated to mobility records might have some bias, e.g.,
convenience stores are probably excluded if �S is set to 10
minutes. Formally, our problem is as below.

Problem 1 (Raw Mobility Annotation). Given a trajectory
T u, raw mobility annotation is to identify a set S ¼ fT u½i; j�g
of stays from T u and annotate a POI p 2 P to each T u½i; j�
such that user u visits POI p when generating the mobility
records included in T u½i; j�.

3 A NEURAL CONTEXT FUSION APPROACH

In this section, we introduce our neural context fusion (NCF)
approach to tacking the problem. We first present the frame-
work overview, then illustrate the exploited context factors
and, finally, specify the training and inference procedures.

3.1 Framework Overview

Our NCF attacks the annotation problem by evaluating the
visit probability of each POI near the stay location. Once all
nearby POIs are processed, the POI with the highest visit
probability is then annotated to the stay. Unlike crowd-level
human mobility that has universal governing rules [3], indi-
viduals’ mobile behaviors are influenced by various complex
contexts and turn out to be more stochastic. Accordingly,
NCF integrates various context factors to estimate visit proba-
bilities. The framework overview of NCF is illustrated in
Fig. 2. It takes as input (a) a user u 2 U, (b) the location l and
time stamp t of a stay T u½i; j� (where l is the mean of
fli; . . . ; ljg and t ¼ ðti þ tjÞ=2), (c) a set Rt

u of regions where
user u stays before time stamp t, and (d) a candidate POI
p 2 P, and outputs the probability that u is visiting p when
staying at location l and time stamp t.

Our NCF first looks up the embeddings of user u, candi-
date POI p and regions r 2 Rt

u. Based on the candidate POI p,
the region embeddings are aggregated together with an atten-
tion network. It then derives three representation learning
(RL) factors via evaluating the pairwise inner products of the
user, POI and aggregated region embeddings. To obtain better

Fig. 1. An example of raw mobility annotation, where points in green and
red denote staying and moving mobility records, respectively, and each
dashed circle represents a stay.

TABLE 1
Descriptions of Mathematical Notations

Notation Description

x ¼ ðl; tÞ Mobility record of location l and time stamp t
T u Trajectory of user u, T u ¼ ½x1; x2; . . . ; xL�
T u½i; j� Sub-trajectory ½xi; . . . ; xj� of T u

�D, �T , �S Distance, temporal closeness and spanning
thresholds

Ru
t Set of regions user u visits before time stamp t

H, h Total number of heads and a specific head
u, uðhÞ User and user embedding in the h-th head
p, pðhÞ POI and POI embedding in the h-th head
r, rðhÞ Region and region embedding in the h-th head
MLPðhÞð�Þ Multilayer perceptron function in the h-th head
aðhÞð�; �Þ Attention mechanism in the h-th head
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expressive power, a multi-head architecture [27] is further
exploited in NCF. Each head computes an independent set of
RL factors. Such process is repeated forH times, resulting in a
total of 3H RL factors. By doing so, NCF can learn a distinct
visiting pattern in each head. In addition, NCF incorporates
another three data-driven domain knowledge factors. Finally,
with a feed-forward fusion network, NCF learns to automati-
cally fuse these factors to compute the visit probability of a
POI given the stay.

3.2 Representation Learning Factors

We next explain the details of deriving RL factors in the hth
(1 � h � H) head. Note that all operations are the same
across different heads except that each head learns its own
embedding and model parameters.

The first RL factor evaluates the preference between
users and POIs. Assume the dimensionality of NCF is d.
Basically, NCF embeds all users and POIs in a hidden space
Rd and computes the preference of a user to a POI as the
inner product of the corresponding user and POI embed-
dings. Formally, the preference factor F

ðhÞ
prefðu; pÞ of user u

and candidate POI p in the h-head is as follows:

F
ðhÞ
prefðu; pÞ ¼ MLPðhÞðuðhÞÞTMLPðhÞðpðhÞÞ; (1)

where uðhÞ and pðhÞ are the embeddings of u and p in the
h-th head of NCF, respectively, andMLPðhÞ is a head-specific
multilayer perceptron (MLP) that performs a non-linear
transformation. The MLP is introduced for two reasons: (a)
to distinguish between embeddings used for evaluating
context factors here and evaluating attention weights later,
and (b) to prevent our model from overfitting via leveraging
an MLP in conjunction with dropout [28]. We adopt an MLP
with two layers of adaptive weights:

MLPðhÞðxÞ ¼ tanhðWðhÞ
2 tanhðWðhÞ

1 xþ b
ðhÞ
1 Þ þ b

ðhÞ
2 Þ: (2)

MLPðhÞ learns two adaptiveweightmatricesW
ðhÞ
1 ;W

ðhÞ
2 2Rd�d

and two bias vectors b
ðhÞ
1 ;b

ðhÞ
2 2 Rd. That is, the transforma-

tion is shared for all users and POIs in the same heads, while
different heads exploit different transformation parameter-
ized by their ownmatrices and biases.

In addition to users and POIs, NCF also embeds regions in
the hidden representation space. Regions, especially those

road-segmented ones, usually exhibit certain functionalities
that meet people’s different needs of socioeconomic activi-
ties [29]. In this sense, they also provide clues from the transi-
tional perspective for rawmobility annotation. For instance, a
person is in general more likely to visit an office building than
a hotel if she/hewas found in a residential area earlier. By fur-
ther learning region representations, NCF incorporates the
user- and POI-based transitional relationships that evaluate
how likely user u transfers fromprevious regions to the candi-
date POI.

Recall that Rt
u is the set of regions visited by user u before

time stamp t. From the transitional perspective, a candidate
POI p is likely to be visited if the transition rates from regions
r 2 Rt

u to p are high. The simplestway to achieve this is to eval-
uate the average inner product between region embeddings r
of r 2 Rt

u and POI embedding p. In this way, each region is
assigned an equal weight for POI p, which is usually not the
true case in practice. Alternatively, we can derive a sequence of
regions based on the stay time at regions r 2 Ru. This can lead
to a sequential model assuming that user u visits these regions
sequentially and, because of that, finally visits POI p. However,
sequential modeling is too restrict for raw mobility analysis,
both due to the incompleteness of the recorded raw mobility
data and the randomized effect in humanmobility.

To address the above two issues, ourNCF approach adopts
an attention mechanism, as shown in the lower right of Fig. 2.
An attention function takes a query and a set of values as
input and outputs a query-aware weighted sum of the val-
ues [27]. By treating candidate POI p as the query and regions
in Rt

u as values, the attention function lets POI p decide the
regions from which the transition starts. Formally, we assign
each region r 2 Rt

u a distinct weight automatically deter-
mined by candidate POI p and region r themselves. After-
ward, we compute an aggregated region embedding r̂tu as the
attention output:

r̂tðhÞu ¼
X
r2Rt

u

aðhÞðpðhÞ; rðhÞÞP
r02Rt

u
aðhÞðpðhÞ; r0ðhÞÞ r

ðhÞ: (3)

Here aðhÞð; Þ is the attention mechanism in the hth head
which determines the weights of rðhÞ. These weights indicate
the importance of regions to POI p. In other words, the
attention mechanism decides to which regions POI p should

Fig. 2. Framework overview of NCF.
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pay attention. In this study, we adopt the simple dot-prod-
uct attention mechanism [27]. It first performs a shared
transformation on POI and region embeddings and then
computes their dot-product as the attention weight:

aðhÞðpðhÞ; rðhÞÞ ¼ MLP
ðhÞ
attnðpðhÞÞTMLP

ðhÞ
attnðrðhÞÞ: (4)

Note that MLP
ðhÞ
attn is another head-specific 2-layer MLP,

which is the same to MLPðhÞ in Eq. (2) except for adopting a
ReLU (Rectified Linear Unit) nonlinearity and learning its
own parameters. ReLUðxÞ ¼ maxð0; xÞ is defined as the pos-
itive part of its argument and has been demonstrated to
enable better training of deep networks. In this way, MLPðhÞ

and MLP
ðhÞ
attn can distinguish between embeddings used for

evaluating context factors and attention weights.
We then derive the POI-based transition context factor

F
ðhÞ
pbtrðRt

u; pÞ as the inner product between the aggregated
region embedding and the POI embedding:

F
ðhÞ
pbtrðRt

u; pÞ ¼ MLPðhÞðr̂tðhÞu ÞTMLPðhÞðpðhÞÞ: (5)

This can be interpreted in a way that each region performs a
direct transition to POI p and the overall region-POI transi-
tion is a weighted sum of these direct transitions.

Similarly, we further derive the user-based transition con-
text factor F

ðhÞ
ubtrðRt

u; uÞ based on the aggregated region
embedding and user embedding:

F
ðhÞ
ubtrðRt

u; uÞ ¼ MLPðhÞðr̂tðhÞu ÞTMLPðhÞðuðhÞÞ: (6)

Note that “attentioned” by candidate POI p, the aggregated
region embedding is mainly contributed by regions that
have high transition rates to POI p. Here the user-based
transition factor verifies the weighted transition from user
perspective, i.e., whether user u is highly-related to these
contributing regions of POI p.

Remarks. (1)We have tried sequential modeling forNCF by
equipping a positional encoder in the attention [27], and
found it rarely leaded to improvement. This indicates that
strictly sequential modeling is not necessary for raw mobility
and, hence, verifies the randomized effect for raw human
mobility. For the sake of simplicity, we only consider the
direct transitions from earlier regions. (2) Technically, NCF
can take any number of regions around the annotated one as
input. However, many real-life applications (e.g., recommen-
dation) require to annotatemobility records once they are gen-
erated, which means there only exist previous regions.
Besides, it is desired to keep the inference component light-
weight and avoid introducing noises by unrelated regions.
Hence, we finally choose to use a small number, e.g., 10, of the
most recent previous regions asRt

u.

3.3 Domain Knowledge Factors

The remaining three context factors in NCF are inspired by
domain knowledge. Essentially, these factors give biases to
POIs that are close to location l, active at time stamp t and
popular among people in general. We exploit a data-driven
strategy to estimate these factors.

First, the distance context factor Fdistðp; lÞ captures the
spatial preference that people are more likely to visit POIs
nearby. It is usually achieved by an exponentially decayed
function w.r.t. distance. However, the decay rate varies in
different formulas, e.g., linear in [10] and squared in RBF
kernel [30]. To determine an appropriate formula, we collect
the statistics of distance between people’s stay locations and
visited POIs on our BEIJING and NYC data (refer to Section 4
for data set details). The density distribution is reported in
Fig. 3. Note that the y-axis is log-scaled and there is an obvi-
ous linear correlation between the distance and the density
on both data sets. We hence adopt an exponential function
with a negative exponent weight for linear distance, the
same to the node potential in [10]:

Fdistðp; lÞ ¼ expð�f � distðl; pÞÞ; (7)

where distðl; pÞ is the distance (in meter) between stay loca-
tion l and POI p and f > 0 is a decaying parameter. A rela-
tively low f is preferred if the positioning accuracy is low
and vice versa. In practice it suffices to choose a f within
[0.001, 0.05]: Fdistðp; lÞ halves every (693, 14) meters with
f ¼ ð0:001; 0:05Þ, respectively.

Similarly, the time factor captures the temporal prefer-
ence that users are more likely to visit POIs that are active at
the stay time. This calls for a metric to evaluate the active-
ness of POIs at different time. Basically, we can use the
number of visits. However, large-scale visit record data is
usually hard to obtain, and check-ins are highly biased to
certain types of POIs such as scenic spots. On the other
hand, obtaining map search query data is much easier, and
there is a strong correlation between map queries and POI
visits [31]. To further verify this, we collect and report the
map search query statistics of four typical POIs in Fig. 4. As
shown, such map search query statistics are a good proxy of
POI activeness. Notably, the selected restaurant is famous

Fig. 3. Distribution of distance between stay locations and POIs.

Fig. 4. The number of hourly map queries for POI activeness.
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for its supper, and its highest activeness in the evening is
also well reflected by the map search query data in Fig. 4a.
The peak time of the hospital, SOHO and shopping mall
occurs at 7 AM, 9 AM and 10 AM, respectively, which also
conforms to real-life cases. Hence, we use the number of
map search queries to evaluate the POI activeness. More
specifically, let Qp;k denote the number of map queries of
POI p in time slot k 2 f1; . . . ; Tg of a day. The corresponding
activeness Ap;k is then estimated by smoothing Qp;k with a
log operator and a constant bias and normalizing:

Ap;k ¼
0; if maxk0Qp;k0 ¼ 0;

log ðQp;kþ1Þ
log ðmaxk0Qp;k0 þ1Þ ; otherwise.

(
(8)

The time context factor Ftimeðp; tÞ ¼ expðAp;kðtÞÞ favors those
active POIs, where kðtÞ is the corresponding time slot of
time stamp t.

The selection of time slot duration involves a tradeoff
between accuracy of POI activeness and sparsity of map
search queries. Time slots of shorter duration, e.g., inminutes,
can record finer-grained POI activeness, but require more
map search query data. In this study, we consider two-hour
time slots, i.e., T ¼ 12. Note that two hours is a reasonable
length of time formost POI visit purposes.

Finally, the popularity context factor FpopuðpÞ captures peo-
ple’s visiting preference for popular POIs. It is also evaluated
from map search query data as popular POIs usually have
moremap queries: FpopuðpÞ ¼ log

�P
k Qp;k þ 1

�
. Once the dis-

tance, time and popularity factors are evaluated for all stays
and their candidate POIs (the top-100 nearest POIs around the
stay location), we perform a Z-score normalization on each of
the three factors. This is to alleviate the possible influence of
different scales of the domain knowledge context factors.

3.4 Training and Inference with Context Fusion

We finally present the training and inference procedures
with context fusion. For each candidate POI p of a stay of
user u at location l and time stamp t, NCF evaluates the con-
text factors as stated in above and concatenates these factors
into a factor vector f in a pre-defined order:

f ¼ ½F ð1Þ
prefðu; pÞ; F

ð1Þ
pbtrðRt

u; pÞ; F
ð1Þ
ubtrðRt

u; uÞ;
. . . ;

F
ðHÞ
prefðu; pÞ; F

ðHÞ
pbtr ðRt

u; pÞ; F
ðHÞ
ubtrðRt

u; uÞ;
Fdistðp; lÞ; Ftimeðp; tÞ; FpopuðpÞ�:

(9)

The factor vector is then fed into a feed-forward fusion net-
work to derive the un-normalized visit probability. We
adopt an MLP with three layers of adaptive weights and
applying the ReLU nonlinearity for context fusion:

Prðu; l; t; pÞ ¼ W3ReLUðW2ReLUðW1fþ b1Þ þ b2Þ;
(10)

where W1 2 Rd�ð3Hþ3Þ, W2 2 Rd�d, W3 2 R1�d and b1;b2 2
Rd are the learnable parameters.

We train our NCF with all stays whose ground-truth vis-
ited POIs are included in the top-100 most nearest candidate
POIs. For each training stay, let ŷ be the vector consisting of
the visit probabilities of all candidate POIs and y be the

corresponding one-hot vector of the index of the ground-
truth POI. We then minimize the cross-entropy loss between
y and softmaxðŷÞ. For inference, we compute the visit proba-
bilities with our NCF for all candidate POIs. Afterward, a
stay is assigned the POI p whose visit probability is the
highest among all candidates.

Remarks. In this work, we choose a supervised setting for
rawmobility annotation. The advantages are as follows. First,
we can better exploit the the preference context between users
and POIs, which plays a very important role in raw mobility
annotation. Second, we can develop an expressive neural
model and train it in an end-to-end manner. As a result, our
NCF is very suitable for dealing with annotation scenarios
when mobility records are generated within areas with
extremely dense POI layout. In practice, there exist a number
of ways to collect labels to ensure supervised learning. For
instance, we can collect users’ check-ins to POIs as labels or
we can exploit an easy-first strategy such that we derive some
seed labels by annotating the easy stays, e.g., those having
very few candidate POIs.

4 EXPERIMENTS

In this section, we present an experimental study of our
NCF approach. Using two real-life data sets, we conduct six
sets of experiments to evaluate: (a) the overall effectiveness
for raw mobility annotation, (b) the effectiveness of the dif-
ferent components in NCF, (c) the efficiency, (d) the param-
eter sensitivity, (e) the utility of the obtained POI-based
human mobility, and (f) the effectiveness for unseen users.

4.1 Experimental Setups

We first introduce the settings of the experimental study.
Data Sets. We chose two data sets to test our model.
(1) BEIJING was obtained from a third-party map service

platform and was produced based on the POI data, road-
segmented region data, and anonymous map search query
and raw mobility records during July, 2018 in Beijing. Stays
were identified from raw mobility records with �D, �T and
�S set to 200 meters, 2 hours and 10 minutes, respectively
(Section 2). Ground-truth visited POIs were determined (i)
with an empirical rule combining both mobility and map
search query data and (ii) by human experts. We finally
removed stays without annotated POIs.

(2) NYC was produced based on a public Foursquare
check-in data set collected fromApril 12, 2012 to February 16,
2013 [22]. Since the check-in locations were very close to the
visited POIs, following [10], we injected noises drawn from a
uniform distribution ðm ¼ 0; d ¼ 0:0002Þ to the check-in loca-
tions. We also collected the basic POI information and the
numbers of likes to POIs with Foursquare developers APIs.1

Note that the latter was used to estimate the popularity

TABLE 2
Data Set Statistics

Description # of stays # of users # of POIs # of regions

BEIJING 436,728 26,917 1,341,663 62,534
NYC 146,325 1,083 318,162 45,935

1. https://developer.foursquare.com/
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context factor. Due to the quota limitations of APIs, we were
unable to obtain the POI activeness data. Hence, we did not
use the time factor on NYC. Regions were derived based on
the road network downloaded from NYC Open Data.2 We
finally filtered out the check-ins not within any regions and
treated each remaining as a stay. We will release our NYC
data in the future.

For both data sets, we randomly split f of stays for train-
ing and used the rest stays for testing, i.e., stay-level split. If
validation was required, 10 percent of the training data was
left out and used for validation. Table 2 lists the statistics of
our BEIJING and NYC data. It is noteworthy that both our
data sets are essentially based on map and trip services, and
the results of our experimental study should be better inter-
preted under this specific situation.

Metric. We adopted the accuracy (Acc) metric to evaluate
the effectiveness, which is the ratio of the numberNca of cor-
rectly annotated test stays to the number Nall of all test
stays: Acc ¼ Nca=Nall.

Algorithms. We compared our NCF approach with the
following baselines and variants of NCF.

� Dist utilizes spatial information only and annotates
each stay to the nearest POI around the stay location.

� HMM trains a hidden Markov model to learn transi-
tion relationships between POI categories [11]. After
deriving the most likely category, it then annotates a
stay to the nearest POI of that category.

� LTR is a learning to rank model, which trains a Lamb-
daMART model to rank POIs near a location [9]. It
then uses the top-1 ranked POIs for annotation. We re-
implemented six of the nine features originally devel-
oped in [9], excluding Creator, Mayor and Friends-
Here-Now since they are not available in our data.

� MRF constructs a Markov random field and annotates
each stay with a POI via minimizing the energy [10]. It
captures personal preferences by enforcing consis-
tency in spatially- or temporally-close stays. For fair-
ness, we used the supervised version provided by the
authors.

� GE is a classic non-sequential approach to location rec-
ommendation [17]. It constructs four graphs and learns
POI, region and time embeddings via preserving graph
structures. It finally evaluates the inner product of the
corresponding embeddings for annotation.

� DKF is a simplified version of NCF, which only fuses
the domain knowledge factors with the fusion
network.

� NCF(H) theH-head version of NCF.
Implementations. We implemented the variants of NCF in

Python and used the Adam optimizer with a batch size of 256.
The learning rate g increased in the first warmup steps and
then decreased [27], i.e., g ¼ 3 � d�0:5 �minfstep � warmup�1:5;
step�0:5g, where step denoted the step number and warmup
was fixed to 1000. We employed three types of regularization
to prevent overfitting: (a) an L2 regularization with
� ¼ 5� 10�4 on all trainable embedding and model parame-
ters, (b) a dropout after each dense layer of MLPs (except for
the last layer of the fusion network), and (c) an early stopping
if the Acc on validation set did not increase in successive 5
epochs. The dropout probability Pdrop was chosen based on
the fraction f of training stays, i.e., a high Pdrop ¼ 0:6 for
f � 30%, a low Pdrop ¼ 0:2 for f � 70%, and a median
Pdrop ¼ 0:4 otherwise. Parameter f was fixed to a moderate
0.005. Finally, we set the number H of heads, the number Nr

of regions inRt
u and the number d of dimensions to 3, 10 and

64 by default, respectively. We will test the parameter sensi-
tivity in our experiments.

The LTR approach was implemented with the Java Ran-
kLib3 library. We trained 2,000 trees, used the Z-score nor-
malization on features, applied an early stop after 20
rounds without performance gain on validation set, and
fixed the shrinkage parameter to 0.3 if f � 60% and 0.2 oth-
erwise. The rest algorithms were implemented in C++ fol-
lowing their recommended settings.

All experiments were conducted on a workstation with
Intel Xeon 2.0 GHz CPUs, 200 GB of main memory and
Tesla P40 GPUs. When quantity measures were evaluated,
the test was repeated over 5 times using different train-test
splits and the average result was reported.

TABLE 3
Accuracy (Acc) Comparison With Different Fraction f of Training Data

Data set Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg.

BEIJING

Dist 0.0678 0.0678 0.0678 0.0678 0.0681 0.0675 0.0675 0.0676 0.0673 0.0677
HMM 0.1287 0.1603 0.1820 0.1967 0.2094 0.2187 0.2270 0.2354 0.2434 0.2002
LTR 0.2760 0.3294 0.3554 0.3675 0.3790 0.3899 0.3934 0.3961 0.4065 0.3659
MRF 0.2142 0.2819 0.3245 0.3571 0.3804 0.3985 0.4149 0.4286 0.4414 0.3602
GE 0.2212 0.3072 0.3411 0.3583 0.3662 0.3720 0.3770 0.3797 0.3817 0.3450

NCFð3Þ 0.3853 0.4229 0.4491 0.4829 0.4984 0.5053 0.5284 0.5343 0.5452 0.4835

NYC

Dist 0.2683 0.2681 0.2678 0.2687 0.2683 0.2680 0.2671 0.2709 0.2666 0.2682
HMM 0.2811 0.2966 0.3132 0.3307 0.3465 0.3589 0.3708 0.3823 0.3914 0.3413
LTR 0.3939 0.4194 0.4252 0.4484 0.4580 0.4522 0.4712 0.4764 0.4896 0.4483
MRF 0.2984 0.3681 0.4188 0.4620 0.4927 0.5230 0.5429 0.5652 0.5810 0.4725
GE 0.3677 0.3387 0.3394 0.3377 0.3421 0.3414 0.3368 0.3414 0.3398 0.3428

NCFð3Þ 0.6120 0.6728 0.7192 0.7520 0.7664 0.7797 0.7981 0.8061 0.8133 0.7466

The standard deviations of all reported Acc are less than 0.03, and NCFð3Þ significantly outperforms other baselines at the 0.01 level, paired t-test.

2. https://data.cityofnewyork.us/City-Government/NYC-Street-
Centerline-CSCL-/exjm-f27b 3. https://sourceforge.net/p/lemur/wiki/RankLib/
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4.2 Experimental Results

We next present our experimental results.
Exp-1: Effectiveness Comparison. In the first set of experi-

ments, we evaluate the overall effectiveness of NCF and the
five baselines for raw mobility annotation. We considered
the multi-head version of our approach, i.e., NCF(3). To
ensure a comprehensive comparison, we varied the fraction
f of training stays from 10 to 90 percent. The resulting Acc
of all tested approaches are reported in Table 3. Note that
each Acc is the average result of five tests.

Overall, considering more visiting context information can
generally promote the effectiveness of raw mobility annota-
tion. Observe that the transition relationships between POI
categories has already substantially improved the Acc of
HMM compared with the spatial-only Dist approach. More-
over, the more complex contexts considered by LTR, MRF,
and GE make the three approaches further better than both
Dist andHMM.

The average effectiveness of LTR and MRF are compara-
ble on BEIJING and NYC. However, their performance gap
varies with f : LTR works better than MRF given limited
training data, e.g., f � 30% while MRF outperforms LTR
when f � 50%. This is because LTR trains a unified model
for all users together while MRF learns to capture the dis-
tinct POI-visiting pattern of each individual. The personal-
ized pattern learning mechanism of MRF becomes more
effective with the increment of f .

Raw mobility annotation bears some similarity to loca-
tion recommendation and the location recommendation
approach GE can also annotate mobility records after some
minor revision. However, GE only considers the complex
co-occurrence-based contexts between POI, region and time
while ignores other basic contexts such as distance and POI
popularity. As a result, GE has an inherent limitation, espe-
cially on NYC, compared with other annotation methods
such as LTR andMRF.

Finally, our NCF approach which fuses various contexts
significantly outperforms all baselines at the 0.01 p-value
level (paired t-test) on both BEIJING and NYC. Indeed the

Acc of NCF(3) is on average (614, 142, 32, 34, 40 percent)
and (178, 119, 67, 58, 118 percent) higher than (Dist, HMM,
LTR, MRF, GE) on BEIJING and NYC, respectively. Such
improvement demonstrates that context fusion is an effec-
tive tool for raw mobility annotation.

Exp-2: Ablation study. In the second set of experiments,
we present an ablation study to evaluate the effectiveness of
the domain knowledge factors, the representation learning
factors and the multi-head architecture of NCF. Again, the
fraction f was varied from 10 to 90 percent.

Exp-2.1: Domain Knowledge Factors . To evaluate the effec-
tiveness of domain knowledge factors, we tested and com-
pared the Acc of DKF with LTR, MRF and GE. The results
are reported in Figs. 5a and 5b. We omitted Dist and HMM
due to their low Acc reported in Table 3.

When varying f , the Acc of LTR, MRF and GE increase
with the increment of f , except for GE on NYC. Note that
GE simply uses the visited POIs to represent users, which
might be inaccurate given the long spanning time of NYC.
Differently, DKF can learn to effectively fuse the domain
knowledge factors for raw mobility annotation given very
limited data. This property makes DKF better than other
tested methods when f � 40% on both data sets. In sum-
mary, the domain knowledge factors can successfully iden-
tify some general patterns for raw mobility annotation.

Exp-2.2: Representation learning factors . To evaluate the
effectiveness of representation learning factors, we tested
and compared the Acc of DKF and NCFð1Þ. The results are
reported in Figs. 5g and 5h.

When varying f , the Acc of NCFð1Þ is consistently higher
than DKF on both data sets. The gap of Acc also increases
with the increment of f . Overall, compared with DKF, our
representation learning factors increase the Acc by 27.5 and
44.7 percent on average on BEIJING and NYC, respectively.

Exp-2.3: Multi-Head Architecture . To evaluate the effective-
ness of the multi-head architecture, we tested and compared
theAcc ofNCFð1Þ andNCFð3Þ reported in Figs. 5e and 5f.

When varying f , the multi-head architecture promotes
the effectiveness of our NCF approach in almost all cases in

Fig. 5. Ablation study (a)–(f) and efficiency evaluation (g)–(h)
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our tests, except for f ¼ 20% on BEIJING. The improvement is
more significant on NYC (4.12 percent on average) than BEI-

JING (1.47 percent on average). Recall that the NYC data
spans for a longer time than BEIJING and the POI-visiting pat-
terns on NYC are very likely to be more complex accord-
ingly. As a consequence, the multi-head architecture
introduces more performance gain on NYC.

Exp-3: Efficiency Comparison. In the third set of tests, we
evaluate the overall efficiency of NCF. We tested the run-
ning time of DKF, NCFð1Þ and NCFð3Þ as well as baselines
LTR,MRF andGE, with f varied from 10 to 90 percent. Sim-
ilar to Exp-2.1, Dist and HMM are omitted due to their effec-
tiveness. The results are reported in Figs. 5g and 5h.

When varying f , the running time of GE decreases while
the ones of other approaches increase with the increment of
f . Note that the number of samples trained by GE is fixed
and it costs less time on inference with larger f . Except for
GE, DKF runs the fastest, followed by NCFð1Þ, NCFð3Þ, LTR
and MRF, respectively. Our compete NCFð3Þ is still faster
than the rest two mobility annotation approaches LTR and
MRF. Indeed, the running time of (DKF, GE, NCFð1Þ, LTR,
MRF) is on average (0.15, 0.33, 0.52, 2.28, 5.57) and (0.10,
0.46, 0.51, 1.60, 21.03) times of the running time of NCFð3Þ
on BEIJING and NYC, respectively.

Exp-4: Parameter Sensitivity. In the fourth set of experi-
ments, we evaluate the parameter sensitivity ofNCF. Fixing f
to 50 percent, we tested the impacts of the numberH of heads,
the numberNr of regions and the number d of dimensions. In
each experiment, we varied the tested parameter while fixed
others to their default values.

Exp-4.1: Impacts of H . To evaluate the impacts of the
number H of heads, we varied H from 1 to 6 and tested the
Acc and running time reported in Figs. 6c and 6f.

When varying H, the Acc of NCF(H) first increases with
the increment of H when H � 4, due to the enlarged model
expressiveness. Further increasing H, the Acc might slightly
decrease. In these cases, our NCF(H) tends to be overfit with
superabundant parameters. It turns out that a moderate H,

e.g., 3 or 4, is reliable for enhancing the expressive power.
With larger H, the model has a potential to learn more, but
there is also a risk of overfitting.

When varying H, the running time increases with the
increment of H reasonably. Indeed, the running time with
H ¼ ð2; 3; 4; 5; 6Þ is on average (1.5, 2.0, 2.6, 3.3, 4.1) and (1.6,
2.2, 3.3, 3.4, 3.4) times of the one of H ¼ 1 on BEIJING and
NYC, respectively.

Exp-4.2: Impacts of Nr . To evaluate the impacts of the
number Nr of regions in Rt

u, we varied Nr from 0 to 10 and
tested the Acc and running time reported in Figs. 6b and 6e.
Note the for Nr ¼ 0 we removed the two transition factors
and we also considered another variant NCF0 which used
Nr/2 previous andNr/2 subsequent regions asRt

u.
Incorporating transition context factors via regions has a

positive impact on the effectiveness of NCF. However, the
best improvement is obtainedwith differentNr on BEIJING and
NYC. For BEIJING, a relatively smallNr is preferred while con-
sidering more regions is better for NYC. Recall that BEIJING

records dense raw human mobility and a small number of
previously stayed regions can provide the most meaningful
transitional clues. On the other hand, the NYC data is
obtained from the sparse check-in data and collecting clues
from more regions is generally more effective. Finally, the
effectiveness ofNCF andNCF0 are close in general.

The running time of NCF increases with the increment of
Nr reasonably. Since NCF

0 requires less epoches for training,
it runs (1.3, 1.5) times faster than NCF on (BEIJING, NYC).
Overall, NCF is more general, e.g., annotating new mobility
records, at the expense of more training computation.

Exp-4.3: Impacts of d . To evaluate the impacts of the num-
ber d of dimensions, we varied d from 32 to 128 and tested
the Acc and running time reported in Figs. 6c and 6f.

When varying d, the Acc generally increases with the
increment of d. From our tests, we recommend to choose d
within ½64; 128� for NCF. The running time also generally
increases with the increment of d, except for the drop at
d ¼ 80. It turns out that NCF with d � 80 can stop after less

Fig. 6. Parameter sensitivity (the left and right y-axes of (a)–(c) correspond to the Acc on BEIJING and NYC, respectively).
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epoches compared with d < 80. As a result, the running
time with different d is overall comparable: the relative pro-
portion in Fig. 6f is bounded by 1.3.

Exp-5: Utility of POI-Based HumanMobility. In the fifth set of
experiments, we illustrate the utility of the obtained POI-based
human mobility with a POI recommendation example. To
avoid introducing model biases, we developed a simple rec-
ommendation strategy. Specifically, given a user u and a time
t of a day (e.g., 5:00 P.M.), we retrieved the historical POI visit
records Vt

u ¼ fðpi; tiÞg of user u such that the time ti of a day
was temporally-close to t (within 1 hour). We then recom-
mended the POIs inVt

u according to the sumof temporal close-
ness CðpÞ ¼

P
ðpi;tiÞ2Vt

u;pi¼p expðDðt; tiÞ=3600Þ, where Dðt; tiÞ
was the time span between t and ti in second.

We used the latest 20 percent of POI visit records of each
user for testing. For the remaining 80 percent of visit records
of each user, we randomly selected 40 percent as observed
POI visits and the rest 40 percent were regarded as unanno-
tated stays. We obtained three recommendation models: (a)
using the observed POI visits only (b) using both observed
POI visits and the annotation results by NCFð3Þ on unanno-
tated stays, and (c) using both observed POI visits and the
ground-truth POIs associated with unannotated stays. Note
that the last represented the best performance that could be
achieved by our recommendation strategy. We adopted
Recall@k with 1 � k � 10 to evaluate the recommendation
performance. The results are reported in Fig. 7.

On both BEIJING and NYC, the obtained POI-based human
mobility consistently improves the effectiveness of POI rec-
ommendation for all tested k. Indeed, the Recall@k is
increased by 34.6 and 11.2 percent on BEIJING and NYC on
average, respectively. Furthermore, with the exploited strat-
egy, the performance based on the POI-based human mobil-
ity by NCF already approaches the best, which is 93.6 and
97.7 percent of the best on BEIJING and NYC on average,
respectively.

Exp-6: Effectiveness Comparison With User-Level Split. In
the last set of experiments, we evaluate the annotation effec-
tiveness of all approaches with user-level split. Note that it
is usually more difficult to deal with the new setting com-
pared with stay-level since we have no direct clues to model
preference and transition patterns of users in test data. We
trained models with data from half of users and annotated
the stays of the rest users, i.e., f ¼ 50%. Note that HMM
learns transition relationships between POI categories from
the training users and applies the knowledge to the testing
users. Besides, MRF degenerates to the unsupervised ver-
sion as no labels are available for testing users. The results
are reported in Table 4.

On both data sets, the Acc of all approaches decreases
with user-level split, except for Dist. The reason of degrada-
tion for HMM is that HMM does not have a precise starting
point to maximize the posterior probability of a Markov
chain. While for LTR, this is because a useful feature, i.e.,
the number of previous visits from the user at the POI,
becomes meaningless. On the other hand, both MRF and
GE perform poorly since errors propagate through the spa-
tial and temporal constraints of MRF and GE models a user
with the visited POIs. Finally, owing to our context fusion
strategy, NCFð3Þ is at least (26, 95 percent) better than all
competitors on (BEIJING, NYC) in the new setting.

Summary. From our tests, we find the following.

1) OurNCF approachwhich fuses various context factors
consistently outperforms other raw mobility annota-
tion approaches. The Acc of our complete NCFð3Þ is
on average (614, 142, 32, 34, 40 percent) and (178, 119,
67, 58, 118 percent) higher than (Dist,HMM, LTR,MRF,
GE) on BEIJING andNYC, respectively.

2) Both the domain knowledge factors and the represen-
tation learning factors are effective for raw mobility
annotation. Besides, the adopted multi-head architec-
ture also improves the accuracy of annotation.

3) Our NCF is also efficient for raw mobility annota-
tion. It runs faster than LTR and MRF. Compared
with GE, the extra time used by NCF is affordable
for achieving the much better effectiveness.

4) We verify the utility of the obtained POI-based human
mobility in a POI recommendation example.

5 RELATED WORK

Location-Based Human Mobility. Fromapurely spatiotemporal
perspective, the location-based human mobility focuses on
movements from one location to another. Basic rules that gov-
ern our daily movements are identified [1], [3], as well as the
individual or group mobility patterns regarding the locations
people tend to visit sequentially [2] or periodically [32]. At
aggregated level, Gonzalez et al. find that human trajectories
show a high degree of temporal and spatial regularity, i.e.,
humans follow simple reproducible mobility patterns [3].
Along this, Song et al. find a 93 percent potential predictability
in user mobility, by measuring the entropy of trajectories [4].
On the other hand, McInerney et al. analyze an individual’s
mobility patterns and identify temporary departures from
routine [33]. Oliveira et al.uncover people’s tendency to revisit
few favorite venues using the shortest-path available [34]. For
location-level mobility prediction, Feng et al. propose an

Fig. 7. Utility of raw mobility annotation.

TABLE 4
Accuracy (Acc) Comparison With Stay- and

User-Level Splits (f ¼ 50%)

Data set Dist HMM LTR MRF GE NCFð3Þ
BEIJING(S) 0.0681 0.2094 0.3790 0.3804 0.3662 0.4984
BEIJING(U) 0.0679 0.1486 0.2774 0.0685 0.1046 0.3495

NYC(S) 0.2683 0.3465 0.4580 0.4927 0.3421 0.7664
NYC(U) 0.2669 0.2787 0.2361 0.0988 0.0686 0.5440

NCFð3Þ significantly outperforms other baselines at the 0.01 level, paired
t-test, with both stay- and user-level splits.
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attentional recurrent network [35] and Baumann et al. study
selecting individual and population models [36]. Besides, Li
et al. consider location inference on socialmedia[37].

Activity-Based Human Mobility. Studies in this category
essentially try to explain the reasons behind people’s
moves [5], [6], [7], [8]. From a computational point of view,
Alvares et al. identify the needs of enriching trajectories with
semantics to simplify queries, analysis, and mining of moving
objects [5]. They then propose a data pre-processing model
that associates sample points in trajectories with geographic
data points. Jiang et al. extract activity-based human mobility
patterns, e.g.,Home–Work–Home, frommobile phone call detail
record data [6]. These patterns can assist transportation and
planning agencies to understand the human activity patterns
in cities. Geo-tagged social media are another source to mine
activity-based mobility [7], [8]. Specifically, Zhang et al. obtain
mobility models by alternating between user grouping and
mobility modeling [7]. Zhu et al. learn a multi-modal spherical
hiddenMarkovmodel for semantics-rich humanmobility [8].

POI-Based Human Mobility. Mobility is also analyzed
together with POIs. Annotation is a typical example, e.g., [9],
[10], [11] and ours. The existing annotation methods are
mainly designed for sparse mobility and usually exploit lim-
ited types of contexts. For instance, Shaw et al. formalize the
annotation problem in a learning to rank framework, consider-
ing basic POI attributes and users’ POI-visit histories [9]. His-
torical POI visits are further exploited in the Markov random
field for annotation [10]. It captures personal preferences by
enforcing consistency in spatially- or temporally-close mobil-
ity records. While [11] is designed for the dense raw mobility,
it only learns the transition relationships between POI catego-
ries with a hidden Markov model. Domain knowledge con-
texts are effective for annotation and have already been
explored. The distance context is exploited in [10], [11] and all
the three contexts are used by [9] as learning to rank features.

Our work is different from these studies in two aspects.
First, we fuse various context factors in people’s dense POI-
visiting behaviors. Second, we adopt a neural network
which captures the hidden preference and transition struc-
tures via representation learning and fuses context factors
in a feed-forward network.

POI Recommendation. Another line of related work is POI
recommendation. There have been extensive studies for the
task, exploiting different strategies like temporal effects [20],
graph embedding [17], sequential modeling [38] and prefer-
ence context modeling [19], to name a few. To some extent,
human mobility annotation and POI recommendation are
similar, in the sense that we can recommend the nearby POIs
as annotation. Indeed, some approaches to location recom-
mendation can be applied for annotation after necessary
adaptation. Our work also differs from those for POI recom-
mendation such that we know the stay location and time
information in advance and we delicately recognize and
model the various contexts of a visit from different perspec-
tives, e.g., preference, transition, distance, time, and popular-
ity, for annotation.

6 CONCLUSION

In this paper we studied raw mobility annotation to obtain
high-quality POI-based humanmobility. The dense trajectories

as well as the semantics embedded in POIs can better support
many mobile analytic tasks. We proposed the first neural
model which fused various key context factors in people’s
POI-visiting behaviors for the task. These factors were either
derived via representation learning or inspired by domain
knowledge. Notably, we utilized an attention mechanism to
deal with the randomized effect in transitions of raw human
mobility and adopted a multi-head architecture to enhance
model expressiveness. Finally, our experimental study on two
real-life data sets demonstrated the effectiveness and efficiency
of our approach aswell as the utility of the obtained POI-based
humanmobility.
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