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An Efficient Approach to Finding Dense
Temporal Subgraphs

Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, Jinpeng Huai

Abstract—Dense subgraph discovery has proven useful in various applications of temporal networks. We focus on a special class of
temporal networks whose nodes and edges are kept fixed, but edge weights regularly vary with timestamps. However, finding dense
subgraphs in temporal networks is non-trivial, and its state of the art solution uses a filter-and-verification framework that is not scalable
on large temporal networks. In this study, we propose a highly efficient approach to finding dense subgraphs in large temporal
networks with T timestamps. (1) We first develop a statistics-driven approach that employs hidden statistics to identifying k time
intervals, instead of T (T + 1)/2 ones (k is typically much smaller than T ), which strikes a balance between quality and efficiency. (2)
After proving that the problem has no constant factor approximation algorithms, we design better heuristic algorithms to attack the
problem, by connecting finding dense subgraphs with a variant of the Prize Collecting Steiner Tree problem. (3) Finally, we have
conducted an extensive experimental study to verify that our approach is both effective and efficient.

F

1 INTRODUCTION

Dynamic behavior is an essential feature of many data analyt-
ic systems and applications that could be modeled as graphs
or networks, such as social network analysis, biological data
analysis, recommendation systems and route planning [1],
[20]. Hence, it is not surprising that dynamic networks
have drawn significant attentions from both industry and
academic communities. In fact, dynamic networks also arise
under many other terms, such as temporal networks, dy-
namic graphs, evolving networks, evolutionary networks,
and graph streams [1], [5]–[7], [9], [10], [12], [14], [18], [21],
[22], [27], [29], [30], [33], [37], [38].

Dense subgraph discovery and analysis have been wide-
ly studied in static networks [2], [3], [13], [15], [16], [23], [24],
[36], such as finding maximal cliques, k-core analysis and
the Prize Collecting Steiner Tree problem. It is worth point-
ing out that dense subgraphs are a very general concept,
and their concrete semantics highly depend on the studied
problems and applications. How to properly transfer or
define their semantics over to temporal networks is still in
the early stage, not to mention effective and efficient mining
algorithms. Examples of such definitions include heavy
subgraphs [6], hotspots [38], anomalies [5] and regions [7].

In this study, we investigate a special class of tempo-
ral networks (see a recent survey [20]), where the nodes
and edges are fixed, but edge weights regularly vary with
timestamps. Essentially, a temporal network with T times-
tamps can be viewed as T snapshots of a static network
such that the network nodes and edges are kept the same
among these T snapshots, while the edge weights vary with
network snapshots. Road traffic networks typically fall into
this category [6], [14], [30], [37], and road traffic analyses
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are of particular importance for large cities such as Beijing,
New York, London and Paris. Indeed, large cities are facing
with heavy traffic congestions, one of the great challenges
of urban computing [5], [6], [30], [39].

We also focus on a certain form of dense temporal
subgraphs, which was initially studied in [6]. Formally
speaking, a temporal subgraph corresponds to a connected
subgraph measured by the sum of all its edge weights in
a time interval, i.e., a continuous sequence of timestamps.
Intuitively, such a dense subgraph may correspond to a
collection of connected highly slow or jam roads (i.e., a jam
area) in road networks, lasting for a continuous sequence of
snapshots. We next use an example to illustrate its basic
idea, such as the real-time traffic status snapshot report
which is regularly updated every couple of minutes. Given a
sequence of such snapshots in a day period, dense temporal
subgraphs help to analyze which areas during what time
are in jam conditions.

Challenges and limitations. However, the problem of find-
ing dense subgraphs in temporal networks is non-trivial,
and it is already NP-complete even for a temporal network
with a single snapshot and with +1 or −1 edge weights
only, as observed in [6]. Even worse, it remains hard to
approximate for temporal networks with single snapshots
(Section 4). Moreover, given a temporal network with T
timestamps, there are a total of T (T + 1)/2 time intervals
to consider, which further aggravates the difficulty. Finally,
the state of the art solution MEDEN [6] adopts a filter-
and-verification framework so that there often remain a large
number of time intervals to verify even if a large portion of time
intervals are filtered. Hence, MEDEN is not scalable when
temporal networks have a large number of nodes/edges or
a large number T of timestamps.

Contributions. In this study, we propose a highly efficient
and effective statistics-driven approach, instead of filter-
and-verification, which employs hidden data statistics to
find dense temporal subgraphs in large temporal networks.

(1) We first develop a statistics-driven approach to identify-
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time interval [1, 5]
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Fig. 1. Running example

ing k time intervals from a total of T (T + 1)/2 ones (Section
3), where T is the number of snapshots and k is a small
constant, e.g., 10. This is achieved by exploring the char-
acteristics of time intervals involved with dense subgraphs
based on a novel evolving convergence phenomenon. This is
also different from filter-and-verification, as it directly finds
the most likely solutions, instead of filtering all impossible
solutions and verifying the remaining unfiltered solutions
one by one.
(2) We then design an algorithm for computing dense sub-
graphs given a time interval (Section 4). After showing
that the problem has no constant factor approximation
algorithms, we develop a heuristic algorithm (by proving
the equivalence of finding dense subgraphs and finding
maximum net worth subtrees, a variant of the Prize Collect-
ing Steiner Tree problem [13], [23]) and three optimization
techniques to improve both the effectiveness and efficiency.
(3) Using both real-life and synthetic data, we conduct an
extensive experimental study (Section 5). (a) We find that
the dense subgraphs found by our method FIDES+ have the
best quality, i.e., about 100.20% and 100.15% on average of
those found by the state of the art filter-and-verification so-
lution MEDEN [6] on BJDATA and SYNDATA, respectively.
(b) Our method FIDES+ is on average 2,980 and 1,486 times
faster than MEDEN on BJDATA and SYNDATA, respectively.
(c) Finally, MEDEN already ran out of memory for temporal
graphs with 150,000 nodes and 2,000 snapshots only.

2 PRELIMINARY

In this section, we introduce the basic definitions of tempo-
ral graphs and the problem to be investigated.

2.1 Basic Concepts

We first introduce basic concepts of temporal graphs.
Temporal graphs. A temporal graph G(V,E,W,L, U) is a
weighted undirected graph with edge weights varying with
timestamps (positive integers), where (1) V is a finite set of
nodes, (2) E ⊆ V × V is a finite set of edges, in which (u, v)
or (v, u) ∈ E denotes an undirected edge between nodes u
and v, (3) for each timestamp t ∈ [L,U ], W t : E → R is
a weight function that maps each edge e ∈ E to a positive

or negative rational number, and (4) [L,U ] is a time interval
representing (U−L+1) timestamps, in which L ≤ U are the
beginning and ending timestamps, respectively. When it is
clear from the context, we simply use G(V,E,W ) to denote
temporal graphs for clarity.

We consider a special class of temporal networks (see
a recent survey [20]) such as road networks and commu-
nication networks, where graph nodes and edges are kept
fixed, but edge weights vary with respect to timestamps.
Intuitively, (1) a temporal graph G(V, E, W ) essentially
denotes a sequence < G1(V,E,W 1), . . ., GT (V,E,WT ) >
of T = U − L + 1 standard graphs, and (2) the edge
weights W t(e) specify the distances, communication laten-
cies or travelling duration [6], [14], [20], [30], [37], or the
affinity or collaborative compatibility [15] between the two
corresponding nodes of edges e at timestamps t. Essentially,
positive/negative edge weights model opposite relations
such as fast/congested traffic and friend/foe relationships.

We also say that Gi(V,E,W
i) (i ∈ [1, T ]) is a snapshot of

temporal graph G(V,E,W ) at timestamp L+ i− 1.
Temporal subgraphs. A temporal graph H(Vs, Es,Ws, Ls,
Us) is a subgraph of G(V,E,W,L, U), denoted by G[Vs, Es,
Ls, Us], if Vs ⊆ V , Es ⊆ Vs × Vs, Es ⊆ E, Ls, Us ∈ [L,U ],
and W t

s(e) = W t(e) for any t ∈ [Ls, Us] and e ∈ Es.
That is, subgraph G[Vs, Es, Ls, Us] only contains a subset

of nodes and edges of graph G, and it is restricted within the
time interval [Ls, Us] that falls into interval [L,U ].

When Vs = V and Es = E, we also simply use G[Ls, Us]
to denote temporal subgraph G[Vs, Es, Ls, Us] for clarity.
Aggregate graphs. Given a temporal graph G(V,E,W,L,
U), its aggregate graph Ĝ(V,E,Wa) is a standard undirected
weighted graph that has the same sets of nodes and edges
as G, and for each edge e ∈ E, its weight Wa(e) is the sum
of weights W t(e) with t ∈ [L,U ], i.e., Wa(e) =

∑U
t=LW

t(e).
Cohesive and positive cohesive densities. For an aggregate
graph Ĝ(V,E,Wa), its cohesive density, denoted by cden(Ĝ),
is the sum of all the edge weights, i.e.,

∑
e∈E Wa(e), and its

positive cohesive density, denoted by cden+(Ĝ), is the sum of
all the positive edge weights, i.e.,

∑
e∈E,Wa(e)>0Wa(e).

The (positive) cohesive density of a temporal graph G
is simply equal to the (positive) cohesive density of its
corresponding aggregate graph Ĝ.
Dense subgraphs. Given a temporal graph G(V,E,W,L,
U) , its dense subgraph is a connected temporal subgraph G[Vs,
Es, Ls, Us] with the greatest cohesive density. It is worth
pointing out that any edges can be chosen as long as the
resulting temporal subgraph is connected.

We next illustrate these concepts with an example.
Example 1: (1) Figure 1(a) depicts a temporal graph G with
9 nodes, 9 edges and 5 timestamps.
(2) Figure 1(b) shows a temporal subgraph H1 of G with
time interval [1, 5], and Fig. 1(c) shows a temporal subgraph
H2 of G with time interval [1, 4], respectively.
(3) Figure 1(d) shows the aggregate graph Ĥ2 of temporal
subgraph H2 whose cohesive density cden(Ĥ2) = 21 and
positive cohesive density cden+(Ĥ2) = 33, respectively.
(4) One can verify that the temporal subgraph H1 in Fig. 1(b)
is indeed the only dense subgraph of G with the greatest
cohesive density cden(Ĥ1) = 44. 2
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Input: Temporal graph G(V,E,W,L, U).
Output: G[Vs, Es, Ls, Us], a solution of FDS.
1. for each time interval [i, j] (L ≤ i ≤ j ≤ U ) do
2. let Ĝ[i,j](V,E,Wa) be the aggregate graph of G[i, j];
3. UBsop[i, j] := cden+(Ĝ[i,j]);
4. Estimate a lower bound LB for the solution of FDS;
5. for each time interval [i, j] (L ≤ i ≤ j ≤ U ) do
6. Prune [i, j] if UBsop[i, j] ≤ LB;
7. for each unpruned time interval [i, j] (L ≤ i ≤ j ≤ U ) do
8. Ĝ′[i,j] := topDown(Ĝ[i,j]);
9. G[Vs, Es, Ls, Us] := a subgraph with the largest cden(G);
10. return G[Vs, Es, Ls, Us].

Fig. 2. Algorithm basicMEDEN

2.2 Finding Dense Subgraphs
We next present the problem statement and its baseline solu-
tions [6]. Given a temporal graph G(V,E,W ), the problem
of finding dense subgraphs (referred to as FDS) is to find a
connected temporal subgraph H = G[Vs, Es, Ls, Us] that has the
greatest cohesive density cden(H).
Intractability. It is already known that the FDS problem is
intractable, as observed in [6].
Proposition 1: The problem of finding dense subgraphs is NP-
complete, even for a temporal network with a single snapshot and
with only +1 or −1 edge weights [6]. 2

Baseline solutions. We next present the details of algorithm
basicMEDEN developed in [6], shown in Fig. 2. Here pro-
cedure topDown aims to find a subgraph of an aggregate
graph with a higher cohesive density.
Algorithm basicMEDEN. Given a temporal graph G, it
returns a solution of FDS. It first computes an upper bound
UBsop[i, j] for each [i, j] of the T (T + 1)/2 time intervals
(L ≤ i ≤ j ≤ U ) (lines 1–3). It then uses procedure topDown
to compute the solutions for the k time intervals [i, j] that
have the top–k highest UBsop[i, j], and sets LB to the highest
cohesive density of the k computed dense subgraphs (line
4). Using LB and UBsop[i, j], it prunes time intervals (lines
5–6), and uses topDown again to compute the solutions for
all unpruned time intervals (lines 7–8). The subgraph found
with the greatest cohesive density is finally returned as the
dense subgraph (lines 9-10).
Remarks. (1) The state of the art solution MEDEN [6] adopts
a filter-and-verification framework. For clarity, here we only
present the basic version basicMEDEN. The sophisticat-
ed version MEDEN incorporates a more scalable filtering
technique by grouping time intervals, and it was reported
that MEDEN achieved an order of magnitude performance
improvement over basicMEDEN [6]. (2) We shall compare
our approach with the sophisticated version MEDEN in the
experimental study (Section 5). (3) It is easy to see that the
FDS problem is solvable in polynomial time when all edge
weights are non-negative.

3 IDENTIFYING TIME INTERVALS

Our efficient statistics-driven approach to finding dense
subgraphs in temporal graphs consists of two key com-
ponents: (1) identifying k time intervals and (2) finding a
dense subgraph for a given time interval. We first introduce
how to identify k time intervals based on a novel evolving
convergence phenomenon. We consider a temporal graph
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G(V,E,W,L, U), and assume without loss of generality that
L = 1 and U = T in the sequel.

Observe that there are T (T + 1)/2 time intervals in total,
and even if T is not a large number, e.g., 2,000, there are more
than 2 × 106 time intervals to investigate, which involves
too much computational cost. Even though MEDEN filters
a large portion of unnecessary time intervals, say 99% [6],
there remain a large number of time intervals to verify, e.g.,
2 × 104 in the above case. Recall that the FDS problem
remains NP-complete for single snapshots (Proposition 1,
Section 2.2). Instead of filter-and-verification, we develop a
statistics-driven approach to exploring k time intervals only,
aiming at striking a balance between quality and efficiency.
Here k is typically a small constant, e.g., 10 or 15.

3.1 Characteristics of Time Intervals
We first present the key characteristics of the time intervals
involved with dense subgraphs.
Cohesive density curves. Given a temporal graph G(V, E,
W ), its cohesive density curve is a function y = f(x) such
that f(x) = (cden(G[x, x]) − µ)/σ for each x ∈ [1, T ],
where µ and σ are the mean value and standard deviation
of cden(G[x, x]) (x ∈ [1, T ]), respectively. That is, we use
normalized cohesive densities with mean values 0 and
standard deviations 1 in the cohesive density curves.
Local maximum and minimum. We consider a cohesive
density curve y = f(x) of temporal graph G(V,E,W ).

The curve y is said to have a local maximum at a point x∗

for a given positive integer δ ≥ 1 if f(x∗) ≥ f(x) holds for
all x with |x− x∗| ≤ δ.

Similarly, y is said to have a local minimum at a point x∗

for a given positive integer δ ≥ 1 if f(x∗) ≤ f(x) holds for
all x with |x− x∗| ≤ δ.
Example 2: Consider the cohesive density curve y = f(x)
of temporal graph G in Fig. 3. Here for δ = 1, the curve y
has a local maximum at points x = 3, 7, 14, 20 and a local
minimum at points x = 1, 5, 10, 17, respectively. 2

We now present the first key observation inspired by
convergent evolution in evolutionary biology. Based on
this, we prove a very important characteristic of the time
intervals involved with dense subgraphs.
Evolving convergence phenomenon. Consider a sequence
< G1(V,E,W 1), . . ., GT (V,E,WT ) > of the T snapshots
of temporal graph G(V,E,W ).

The evolving convergence phenomenon asserts that if
there exists an edge in Gi (i ∈ [1, T − 1]) whose weight is
no less (resp. no greater) than its weight in Gi+1, then for
all edges, their weights in Gi are no less (resp. no greater)
than their corresponding weights in Gi+1. Intuitively, this
says that all edges evolve in a convergent manner, i.e., the
increase of one edge weight indicates that all the remaining
edge weights do not decrease, and vice versa.
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Proposition 2: To find the dense subgraph, we only need to
consider the time intervals [i, j] such that the cohesive density
curve has a local maximum at certain point between i and j under
the evolving convergence phenomenon. 2

The evolving convergence phenomenon assures the cor-
rectness of Proposition 2, which gives a precise characteristic
of the time intervals involved with dense subgraphs. It may
not completely hold, but remains effective to a large extent
in practice. Moreover, it is indeed a statistical character-
istic which captures the general tendency of edge weight
changes on certain temporal graphs.

Considering the Beijing road network for instance, the
phenomenon almost holds. There are morning and evening
peaks at Beijing, and it is common that a majority of roads
become slow/jam during the peak time, and enter a faster
traffic condition after the peak time ends, although individ-
ual roads may be physically isolated. In this case, it is also
easy to see that it is very likely that the dense subgraph lies
in a time interval containing peaks.

Moreover, it is trivial to verify the following two charac-
teristics, which further help us to identify the time intervals
involved with dense subgraphs.
Fact 1: All dense subgraphs have a non-negative cohesive density,
which equals to zero for a subgraph without any edges. 2

Intuitively, Fact 1 tells us that dense subgraphs are more
concerned with the positive weight edges, and the positive
cohesive density may give better estimations for the poten-
tial of time intervals, compared with the cohesive density.
Heuristic 2: Temporal subgraph G[i, j] (i ≤ j ∈ [1, T ]) with
a higher positive cohesive density in general is a good candidate
subgraph to contain a dense subgraph. 2

The positive cohesive density essentially provides an
upper bound of the cohesive density that any subgraph
can achieve. And Heuristic 2 tells us that the temporal
subgraph with the highest positive cohesive density is very
likely to contain the dense subgraph that we are looking for.
Instead of the highest one only, we further compute the time
intervals whose corresponding temporal subgraphs have
the top–k highest positive cohesive densities from those [i, j]
containing a local maximum.
Remarks. As will be shown by the experiments (Section 5),
the three characteristics (i.e., Proposition 2, Fact 1 and
Heuristic 2) together assure a pretty good estimation of the
time intervals involved with dense subgraphs, even when
the phenomenon does not completely, but almost holds.

3.2 Computing Top-K Time Intervals

We finally present our methods to estimate the top–k time
intervals whose aggregate graphs have the greatest positive
cohesive densities, following the analysis in Section 3.1.
Algorithm maxTInterval uses local maxima to identify the
time intervals, and is presented in Fig. 4.

Given a temporal graph G(V,E,W ) and two positive
integers k and δ, it outputs a set of k/2 aggregate graphs
with the largest positive cohesive densities. (1) It first com-
putes the h local maxima of the cohesive density curve of
G (lines 1–2). (2) For each local maximum xi (i ∈ [1, h]),
it finds two timestamps, i.e., lower bound xi.l and up-
per bound xi.u, such that xi.l ≤ xi ≤ xi.u and f(x)

Input: Temporal graph G(V,E,W ), positive integers k and δ.
Output: k/2 aggregate graphs Ĝ with the largest cden+(Ĝ).
1. let y = f(x) be the cohesive density curve of G;
2. let x1 < . . . < xh be the local maxima of y;
3. let xi.l/xi.u be the lower/upper bounds of xi (i ∈ [1, h]);
4. Merge overlapped time intervals [xi.l, xi.u] and [xj .l, xj .u];
5. S := {[xi.l, xj .u] | 1 ≤ i ≤ j ≤ h};
6. S2k := the top–2k time intervals in S;
7. for each time interval [l, u] ∈ S2k do
8. Tune [l, u] to [l′, u′] s.t. cden+(G[l′, u′]) > cden+(G[l, u]);
9. Sk/2 := the top–k/2 time intervals in S2k;
10.R := {G[l, u] | [l, u] ∈ Sk/2};
11. return the aggregate graphs of temporal graphs in R.

Fig. 4. Algorithm maxTInterval using local maxima

(x ∈ [xi.l, xi.u]) remains relatively high (line 3). More
specifically, it finds the largest timestamp x ≤ xi such that
|f(x)− f(x− 1)| ≥ ξ(x) and the smallest timestamp x ≥ xi
such that |f(x)− f(x+ 1)| ≥ ξ(x), where ξ(x) = ∆(x)ef(x)

is an adaptive smoothing threshold that considers both the
normalized cohesive density f(x) and density change. Here
∆(x) is the smaller of the average density change of the
entire curve and the local average change within c times-
tamps from x, i.e., 1

2c

∑x+c−1
i=x−c |f(i)−f(i+1)|, ∆(x) is scaled

using ef(x) as f(x) can be either positive or negative, and
c is a small constant, e.g., 2. (3) It then repeatedly merges
overlapped time intervals by removing local maxima (line
4). The intuition behind is that close maxima can be treated
as one with wider range. (4) Using xi.l and xi.u (i ∈ [1, h]), it
generates a set S of h(h + 1)/2 time intervals (line 5). Note
that time interval [xi.l, xj .u] (i ≤ j) must contain a local
maximum xi. (5) After this, a subset of 2k time intervals
whose aggregate graphs have the top–2k largest positive
cohesive densities are selected and further tuned (lines 6–
8). For time interval [l, u] ∈ S2k, it considers four tuning
candidates [l ± η, u ± η] simultaneously, and uses the one
giving the largest positive cohesive density to replace [l, u]
if needed (line 8). The step size η is first fixed to 1, and is
doubled every 4 replacements. (6) It finally computes Sk/2

as the top–k/2 time intervals in S2k and returns the k/2
aggregate graphs given time intervals in Sk/2 (lines 9–11).
Algorithm minTInterval is the counterpart of maxTInterval,
and it uses local minima to identify the remaining top–
k/2 time intervals, as two local minima contain a local
maximum, another form of time intervals. It is along the
same lines as algorithm maxTInterval except the following:
It (1) computes h local minima x1 < . . . < xh (line 2), (2)
produces a set S of h(h − 1)/2 time intervals in the form
of {[xi.u, xj .l] | 1 ≤ i < j ≤ h]} (line 5), and (3) sets the
smoothing threshold ξ(x) = ∆(x)e−f(x) to assure that f(x)
(x ∈ [xi.l, xi.u]) remains relatively low.

We next use an example to illustrate how to generate the
top–k time intervals using local maxima and minima.
Example 3: Consider the curve y = f(x) in Fig. 3 again.
(1) Assume without loss of generality that [x.l, x.u] is [2, 4],
[6, 8], [13, 15], [19, 20] for the local maxima at points x =
3, 7, 14, 20, respectively. Here no local maxima can be
merged. Then the set S at line 5 of maxTInterval is {[2, 4],
[2, 8], [2, 15], [2, 20], [6, 8], [6, 15], [6, 20], [13, 15], [13, 20],
[19, 20]}. If [2, 8] ∈ S2k and cden+(G[1, 8])>cden+(G[2, 8]),
then maxTInterval replaces [2, 8] with [1, 8].
(2) Assume without loss of generality that [x.l, x.u] is [1, 2],
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Input: Aggregate graph Ĥ(V,E,Wa).
Output: Converted graph ~H(V ′, E′, p, w).
1. Ĥ+ := Ĥ with non-negative edges only;
2. Compute the connected components CC1, . . ., CCl of Ĥ+ ;
3. let V ′ := {u1, . . . , ul};
4. for each i ∈ [1, l] do p(ui) := the total edge weight of CCi;
5. if there are negative edges between CCi and CCj (i, j ∈ [1, l])
6. then E′ := E′ ∪ {(ui, uj)};
7. w(ui, uj) := |the largest negative edge weight|;
8. return ~H(V ′, E′, p, w).

Fig. 5. Procedure convertAG

[4, 6], [9, 11], [16, 18] for the local minima at points x = 1, 5,
10, 17, respectively. Then the set S of algorithm minTInterval
is {[2, 4], [2, 9], [2, 16], [6, 9], [6, 16], [11, 16]}. If time interval
[6, 16] ∈ S2k and cden+(G[6, 15]) > cden+(G[6, 16]), then
minTInterval replaces [6, 16] with [6, 15]. 2

Time complexity analysis. Algorithms maxTInterval and
minTInterval both run in O((T + h2)|E|) time, in which h is
the number of local maxima or minima.

Observe the following. (1) It takes O(T |E|) time to
generate the cohesive density curve (line 1). (2) When se-
lecting the top–2k time intervals based on positive cohesive
densities (line 6), it takes O(h2|E|) time by precomputing
WΣ(e, t) =

∑t
i=1W

i(e) for each edge e and timestamp
t. (3) It takes O(k|E| log T ) time to tune time intervals
(lines 7–8) since each one can be updated at most O(log T )
times. Putting these together, we have the conclusion. And,
similarly, algorithm minTInterval runs in O((T + h2)|E|)
time as well. Note that here k is a small constant, e.g., 10
or 15, and h is typically much smaller than T .
Remarks. Different from our earlier work [26], the cohe-
sive density curve is plotted with the normalized cohesive
densities, and the top–k time interval estimation algorithms
are refined by: (a) determining more accurate time intervals
with an adaptive smoothing threshold, instead of a fixed one,
and (b) revising the tuning strategy. As will be shown in the
experimental study (Section 5), these help to identify better
time intervals of dense subgraphs.

4 COMPUTING DENSE SUBGRAPHS

We now explain how to compute the dense subgraph for a
given time interval. This reduces to the problem of finding
the subgraph of an aggregate graph with the highest co-
hesive density, which remains NP-hard as observed in [6].
We first show that the problem has no constant factor
approximation algorithms, and then connect the problem
of finding dense subgraphs in an aggregate graph with
the Net Worth Maximization problem (NWM), a variant of
the Prize Collecting Steiner Tree problem [13], [23]. Hence,
we develop algorithm heuristics to attack the problem. We
finally present our complete solution FIDES+ for finding
dense subgraphs in temporal networks.

4.1 Approximation Hardness
The hardness is verified by a reduction from the Net Worth
Maximization (NWM) problem, a variant of the Prize Col-
lecting Steiner Tree problem [13], [23]. Given an undirected
graph G(V,E), a non-negative edge weight w(e) for each
e ∈ E and a non-negative node weight p(v) for each v ∈ V ,
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Fig. 6. Example of converted graphs

the NWM problem is to find a subtree ST (Vst, Est) that max-
imizes its net worthNW (ST ) =

∑
v∈Vst

p(v)−
∑

e∈Est
w(e).

It is already known that the NWM problem is NP-complete,
and is hard to approximate: it is NP-hard to approximate the
optimal net worth within any constant factor [23]. Finding
an optimal dense subgraph of an aggregate graph is also
non-trivial, as shown below.
Theorem 3: The cohesive density achieved by an optimal sub-
graph is NP-hard to approximate within any constant factor. 2

We utilize the approximation factor preserving reduction
(AFP-reduction) that retains approximation bounds [11],
[35], and show that there exists an AFP-reduction from the
NWM problem to the problem of finding the dense subgraph
of an aggregate graph, from which Theorem 3 follows.

4.2 Connections with the NWM Problem
Theorem 3 tells us that heuristic algorithms are essentially
the practical solutions on which we should focus, as its
counterpart the NWM problem does [23]. We shall reduce the
problem of finding dense subgraphs in an aggregate graph
with positive or negative edge weights to the NWM problem,
based on a notion of converted graphs that are undirected
graphs with non-negative node and edge weights.

We next present the details of procedure convertAG in
Fig. 5, which takes as input an aggregate graph Ĥ(V,E,
Wa), and returns its converted graph ~H(V ′, E′, p, w) with
non-negative node and edge weights.

Procedure convertAG first generates graph Ĥ+ by re-
moving all the edges in Ĥ with negative weights (line 1).
It then computes the connected components of Ĥ+ (line
2). For each connected component CCi (i ∈ [1, l]), there
is a corresponding node ui in ~H , whose weight p(ui) is
equal to the total edge weight of CCi (lines 3-4). An edge
(ui, uj) (i, j ∈ [1, l]) is included in ~H if there are negative
weight edges between CCi and CCj in Ĥ , and the edge
weight w(ui, uj) is the absolute value of the largest negative
edge weight among all edges across CCi and CCj (lines 5-7).
Finally, the converted graph ~H is returned (line 8).
Example 4: Consider the temporal graph G in Fig. 1(a) again,
and its aggregate graph Ĝ in Fig. 6(a). The converted graph
~G of Ĝ computed by convertAG is shown in Fig. 6(b). 2

With a close look at procedure convertAG, it is easy to
verify the following, which connects the dense subgraphs in
an aggregate graph with the maximum net worth subtrees
in its converted graph.
Proposition 4: Finding a dense subgraph in an aggregate graph
Ĥ is equivalent to finding a maximum net worth subtree in the
converted graph convertAG(Ĥ). 2

Remarks. (1) It is worth mentioning that convertAG reduces
the size of aggregate graphs, which further helps to improve
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Input: Converted graph ~H .
Output: Merged converted graph ~H ′.
1. let ~H ′ := ~H ;
2. while there are nodes in ~H ′ that can be merged do
3. Merge u and v into a single node x;
4. p(x) := p(v) + p(u)− w(u, v);
5. Remove edge (u, v) from ~H ′;
6. Replace all edges (u, y) and (v, y) with (x, y);
7. w(x, y) := min(w(u, y), w(v, y));
8. return ~H ′.

Fig. 7. A basic version of procedure strongMerging

the efficiency of finding dense subgraphs. (2) Different from
aggregate graphs, converted graphs have non-negative node
and edge weights only, as illustrated by Example 4.

4.3 Algorithm Optimizations
Proposition 4 tells us that the algorithm of the NWM prob-
lem [23] provides us a basic solution. We next investigate
optimization techniques to find the dense subgraphs of ag-
gregate graphs, by finding the maximum net worth subtrees
in the corresponding converted graphs.
(I) Strong merging. After having a converted graph, we
repeatedly merge two neighboring nodes if the resulting
merged node has a weight no less than the two weights
before merging. Intuitively, those neighboring nodes belong
to the same maximum net worth subtree. This technique is
to reduce the size of the converted graph for speeding up
the process of identifying dense subgraphs.

We next present the details of a basic version of proce-
dure strongMerging in Fig. 7. It takes as input a converted
graph ~H , and returns its merged converted graph ~H ′. It
repeatedly merges two neighboring nodes u and v if both
p(u) ≥ w(u, v) and p(v) ≥ w(u, v) hold (lines 1–7) and then
returns the merged converted graph ~H ′ (line 8).

However, there may exist different ways to compute
the weights of the merged nodes, and two nodes may be
merged under a more complex condition, as shown below.
Example 5: (1) Consider the converted graph ~H in Fig. 8(a).
(a) When nodes u6, u7, u8 are merged using edges (u6, u7)
and (u6, u8), p({u6, u7, u8}) equals to 12, and node u9

cannot be further merged; (b) When nodes u6, u7, u8 are
merged using edges (u6, u8) and (u7, u8), p({u6, u7, u8})
equals to 16, and node u9 can further be merged, as shown
in Fig. 8(b). That is, the way how nodes are merged has
effects on both the node weights and the merging process.
(2) One can easily check that basic strongMerging merges
nodes u2 and u3 with p({u2, u3}) = 20. Moreover, as shown
in Fig. 8(b), node {u2, u3} can further be merged with u1

by using edges (u1, u2) and (u1, u3) and removing edge
(u2, u3). The resulting node weight p({u1, u2, u3}) = 25 is
higher than both p({u2, u3}) and p(u1). 2

To address these, we maintain a Minimum Spanning
Tree (MST) for each merged node in the process of pro-
cedure strongMerging, which leads to the need of merging
two MSTS (line 3). Hence, procedure strongMerging further
uses Sleator–Tarjan dynamic trees [34] to achieve a good
performance, as shown below.
Proposition 5: Given a converted graph ~H(V ′, E′), the ex-
tra cost of maintaining MSTS for procedure strongMerging is
bounded by O(|E′| log |V ′|). 2
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Fig. 8. Example for strong merging

For convenience, the edges in a converted graph are
classified into (a) internal edges, the edges of MSTS asso-
ciated with merged nodes, (b) external edges, those edges
not associated with any MST, and (c) across-MST edges, the
external edges connecting two distinct MSTS.

We first introduce the rules for node merging.
(1) We say that two (merged) nodes u and v are type-I

mergeable if there exists an external edge (u, v) such that
min{p(u), p(v)} ≥ w(u, v). That is, connecting u and v with
an external edge (u, v) forms a new type-I merged node.

(2) We say that two (merged) nodes u and v are type-II
mergeable if there exist (a) two external edges (uc1, v

c
1) and

(uc2, v
c
2) connecting the associated MSTS of u and v, respec-

tively, and (b) an internal edge e in the MST associated with
u or v such that p(u)+p(v)+w(e)−w(uc1, v

c
1)−w(uc2, v

c
2) ≥

max{p(u), p(v)}. That is, connecting u and v with two ex-
ternal edges (uc1, v

c
1) and (uc2, v

c
2) and removing an internal

edge e form a new type-II merged node.
We then explain the complete procedure strongMerging.

(1) It considers type-II mergeable pairs only when no type-
I pairs are left, as type-II mergeable needs merged nodes,
and it is designed as a complement of type-I mergeable
to adjust the edges used for merging. For type-I pairs, if
one node belongs to an optimal subtree, the other must as
well. This is not true for type-II pairs whose process is order
sensitive. For instance, suppose adding node u′1 in Fig. 8(a)
with p(u′1) = 0 and w(u′1, u2) = w(u′1, u3) = 3, then u′1 can
also be type-II merged with {u2, u3}, which is a sub-optimal
solution. However, node u1 cannot be merged any more.
(2) It maintains across-MST edges for the convenience
of merging MSTS. It computes the degree deg(u) =∑

uc∈u deg(uc) of (merged) node u, where uc is a converted
graph node of u, e.g., deg({u1, u2, u3}) = 2 + 3 + 3 in
Fig. 8, and always merges across-MST edges from lower
to higher degree nodes. In this way, each edge is merged for
at most blog |E′|c+ 1 times for converted graph ~H(V ′, E′).
Moreover, the across-MST edges of each merged node are
stored in a balanced binary tree, with a total maintaining
cost of O(|E′| log2 |V ′|).
(3) Once nodes u and v are merged, new type-I pairs are fur-
ther identified by verifying the across-MST edges of u (resp.
v) whose weights fall into the range of (p(u), p({u, v})]
(resp. (p(v), p({u, v})]).
(4) The process of type-II pairs is order sensitive. After all
type-I pairs are processed, procedure strongMerging sorts
all across-MST edges by the higher node weights, and then
by the lower node weights of the two end nodes. This
gives priority to further merging nodes of higher weights. It
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Input: Minimum spanning tree T of ~H ′.
Output: An optimal subtree ST of T .
1. Randomly select a node as the root of T ;
2. nw(u) := p(u) (u ∈ T );
3. for each node u in T in a bottom-up fashion do
4. for each child node v of u do
5. if nw(v) < w(u, v) then remove edge (u, v);
6. else nw(u) := nw(u) + nw(v)− w(u, v);
7. ur := argmaxu{nw(u)};
8. return the subtree ST rooted at ur .

Fig. 9. Procedure strongPruning

then processes each across-MST edge, and merges the two
MSTS, if possible, where external edge (uc1, v

c
1) is the edge

to process, external edge (uc2, v
c
2) is set to the lowest-weight

edge between the two MSTS, and the removed interval edge
e is fixed to the highest-weight edge in the circle formed by
the two MSTS and external edges (uc1, v

c
1) and (uc2, v

c
2). Both

the sorting and the processing steps cost O(|E′| log |V ′|)
time. Note that this step may also find new type-I pairs.

Combining these, one can easily verify that procedure
strongMerging runs in O(|E′| log2 |V ′|) time.
(II) Strong pruning. Strong pruning is an effective technique
for solving the NWM problem developed in [23], [28], which
finds an optimal net worth subtree containing a specified
root node. Hence, we revise and utilize the improved strong
pruning technique that eliminates the restriction of contain-
ing a specified root node [28]. Given an arbitrary tree T , it
produces a subtree ST of T that maximizes its net worth
NW (ST ) among all subtrees of T . This technique is to
identify the dense subgraphs of aggregate graphs.

We next present the details of procedure strongPruning
in Fig. 9 that given an MST T of a merged converted
graph generated by procedure strongMerging, returns the
maximum net worth subtree ST of T . It first reconstructs T
by randomly choosing a root node (line 1). It then initializes
the nw(u) of each node u as its p(u) (line 2). All nodes u are
further updated in a bottom-up manner, i.e., u is updated if
and only if all its child nodes have already been updated.
When it updates node u, each of the child nodes of u is
processed independently: (a) If nw(v) ≥ w(u, v), it replaces
nw(u) with nw(u) + nw(v) − w(u, v), and (b) otherwise, it
removes edge (u, v) from T (lines 3–6). Finally, the subtree
rooted at the node ur with the maximum nw(ur) in the
remaining T is returned (lines 7-8).

In the following, we use an example to illustrate the
process of procedure strongPruning.
Example 6: Consider the merged converted graph ~H ′ in
Fig. 8(b). Its MST T and the optimal subtree ST produced
by strongPruning are shown in Fig. 10(a), in which x and y of
labels x/y denote p(u) and nw(u) of nodes u, respectively,
and dashed edges denote removed edges in the process.

Procedure strongPruning first randomly selects {u1, u2,
u3} as the root of T . For each node u in T , its net worth
nw(u) is initialized with p(u). The net worth nw({u5})
and nw({u6, u7, u8, u9}) need not to be updated as both of
them have no child nodes. The first modification is on node
{u4}, whose net worth nw({u4}) is replaced by nw({u4})+
nw({u6, u7, u8, u9}) − w({u4}, {u6, u7, u8, u9}). Then for
node {u1, u2, u3}, its attached two edges are removed since
nw({u4}) < w({u1, u2, u3}, {u4}) and nw({u5}) < w({u1,
u2, u3}, {u5}). Finally, the subtree rooted at {u1, u2, u3} is

u4 u5
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12

12
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u8u9
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u2u3
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20/20

10/10

25/25

(a) Subtree ST by strong pruning (b) Subtree ST ′ by bounded probing

Fig. 10. Examples for strong pruning and bounded probing

returned, which is indeed {u1, u2, u3} itself, as its net worth
nw({u1, u2, u3}) is the maximum. 2

Based on [28], one can easily check the following result.
Corollary 6: Given a tree T (VT , ET ), procedure strongPruning
takes O(|VT |) time to find the maximum net worth subtree. 2

(III) Bounded probing. For the subtree found by procedure
strongPruning, we propose a bounded probing technique to
find another subtree with a higher net worth. This technique
is to further optimize the dense subgraphs with a limited
extra cost. We first illustrate this with an example below.
Example 7: Consider the subtree ST , i.e., the single node
{u1, u2, u3}, found by procedure strongPruning in Fig. 10(a),
where all nodes can no longer be merged. But, as shown
in Fig. 10(b), after adding nodes {u5} and {u6, u7, u8, u9}
along the path connecting them, we indeed have a subtree
with a higher net worth 25 + 10 + 20− 12− 13 = 30. 2

We next present the details of boundedProbing, shown in
Fig. 11. Given a merged converted graph ~H ′ and the subtree
ST of ~H ′ found by strongPruning, it returns another subtree
ST ′ of ~H ′ with a higher net worth. It first probes the set
B of nodes in the merged converted graph ~H ′ (but not in
the subtree ST ) that can reach certain nodes in ST within
r hops, where r is a small constant, e.g., 4 (lines 2–3). For
each node u ∈ B, it greedily chooses a path that connects it
with ST and gives the highest increment of the net worth if
merging the path into ST (lines 4–6). For each node u ∈ B
in the descending order of NW+(u), it merges path P (u)
into ST if NW+(u) ≥ 0 and nodes in V +(u) are not in ST
yet (lines 7–9). The above process is repeated r times, and it
finally returns the subtree ST as ST ′.
Remarks. An alternative way for bounded probing is to
compute several paths for each node u ∈ B, and to extend
ST using these paths. Here we choose to compute the best
paths and repeat the process r times. In this way, it not only
potentially finds better paths after new nodes are included
in a subtree, but also finds more extending paths starting
from the newly included nodes in a subtree.

4.4 Algorithm for Aggregate Graphs
We now present the algorithm to compute the Aggregate
graph’s Dense Subgraphs, referred to as compADS+. A basic
version of algorithm compADS+ is shown in Fig. 12, which
takes as input an aggregate graph Ĥ , and returns the dense
subgraph of Ĥ , using the three optimizations in Section 4.3.

Algorithm compADS+ first transforms aggregate graph
Ĥ into its converted graph ~H (line 1), and then produces
a merged converted graph ~H ′ using the strong merging
technique (line 2). An MST T of ~H ′ is computed (line 3),
and a subtree ST of T is produced using the strong prun-
ing technique (line 4), which is further optimized to ST ′
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Input: Merged converted graph ~H ′, subtree ST of ~H ′.
Output: Subtree ST ′ of ~H ′ with a higher net worth.
1. repeat for r times:
2. let VH and VST be the node sets of ~H ′ and ST ;
3. B := {u | u ∈ VH \ VST , ∃v ∈ VST dist(u, v) ≤ r};
4. for each u ∈ B do
5. let P (u) be the simple path v0/v1/ . . . /vL such that

L ≤ r, v0 ∈ VST , vL = u, {v1, . . . , vL} ∩ VST = ∅, and
NW+(u) :=

∑L
i=1

(
p(vi)− w(vi−1, vi)

)
is maximized;

6. V +(u) := {v1, . . . , vL};
7. for each u ∈ B in the descending order of NW+(u) do
8. if NW+(u) ≥ 0 and V +(u) ∩ VST = ∅
9. then Merge path P (u) into ST; VST := VST ∪ V +(u);
10. return the subtree ST as ST ′.

Fig. 11. Procedure boundedProbing

with the bounded probing technique (line 5). A minimum
spanning subtree ST ′′ of ~H is computed that has the same
set of nodes as ST ′ (line 6). Finally, the subgraph of Ĥ
corresponding to the ST ′′ is returned (line 7).

We next show how algorithm compADS+ finds the dense
subgraph of an aggregate graph with an example.
Example 8: Consider the converted graph ~H shown in
Fig. 8(a). Algorithm compADS+ computes its merged con-
verted graph ~H ′ shown in Fig. 8(b). The MST T of ~H ′ is
then computed, as shown in Fig. 10(a). With strongPruning,
it finds the optimal subtree of T , i.e., the single {u1, u2, u3}
in T . Using boundedProbing, it finds another subtree ST ′,
having nodes {u1, u2, u3}, {u5} and {u6, u7, u8, u9}, with a
higher net worth, as shown in Fig. 10(b). This tree is indeed
the MST in converted graph ~H , and, finally, the subgraph
corresponding to ST ′ is returned. 2

Recall that the strong merging technique directly merges
two neighboring nodes using the edge between them. This
might give worse results when there exist paths that are
better than the incident edges for merging. Hence, algorith-
m compADS+ further computes dense subgraphs without
using the strong merging technique (lines 1, 3–5 and 7), and
finally returns the better solution found.
Time complexity analysis. Algorithm compADS+ runs in
O(|V | + |E| + |V ′| log |V ′| + |E′| log2 |V ′|) time, in which
|E′| and |V ′| are the numbers of edges and nodes in the
converted graph ~H , respectively.

Observe the following. (1) Given an aggregate graph
Ĥ(V,E,Wa), it takes procedure convertAGO(|V |+|E|) time
to produce its converted graph ~H(V ′, E′, p, w), as finding
all connected components can be done in linear time [8] (line
1). (2) Procedure strongMerging runs in O(|E′| log2 |V ′|)
time to generate the merged converted graph ~H ′ of ~H
(line 2). (3) An MST can be computed in O(|E′| log |V ′|)
time [8] (lines 3, 6). (4) Strong pruning can be done in
O(|V ′|) time [23] (line 4). Finally, (5) bounded probing takes
O(r2|E′| + r|V ′| log |V ′|) time (line 5). Note that here ~H is
typically much smaller than G, ~H ′ is smaller than ~H , and r
is a small constant, e.g., 3 or 4.
Remarks. Different from our earlier work compADS in [26],
here compADS+ is equipped with enhanced strong merging.

4.5 FIDES+: The Complete Solution
We finally present the complete statistics-driven approach
to FInding DEnse Subgraphs in temporal graphs, referred

Input: Aggregate graph Ĥ(V,E,Wa).
Output: Subgraph of Ĥ with a large cohesive density.
1. ~H(V ′, E′, p, w) := convertAG(Ĥ);
2. ~H ′ := strongMerging( ~H);
3. T := a minimum spanning tree of ~H ′;
4. ST := strongPruning (T );
5. ST ′ := boundedProbing ( ~H ′, ST );
6. ST ′′ := a minimum spanning subtree of ~H using ST ′;

/*ST ′′ and ST ′ have the same set of converted graph nodes*/
7. return the subgraph of Ĥ corresponding to ST ′′.

Fig. 12. Algorithm compADS+

to as FIDES+, which combines algorithm compADS+ above
and the algorithms of identifying time intervals in Section 3.

Algorithm FIDES+ takes as input a temporal graph
G(V,E,W ) and positive integers k and δ, and outputs the
dense subgraph of G with the largest possible cohesive
density. It first computes k time intervals using algorithms
maxTInterval and minTInterval. Among these k time inter-
vals, it finds and returns the subgraph of G with the largest
possible cohesive density, using algorithm compADS+.
Time complexity analysis. By the analyses of algorithms
maxTInterval, minTInterval and compADS+, it is easy to
know that given a temporal graph G(V,E,W ) and a pos-
itive integer k, algorithm FIDES+ runs in O((T + h2)|E| +
k(|V |+ |E|+ |V ′| log |V ′|+ |E′| log2 |V ′|+ |E| log T )) time.
Space complexity analysis. The space complexity of algo-
rithm FIDES+ is O(2T |E|): (1) the storage of the temporal
graph costs O(T |E|) space, (2) we compute WΣ(e, t) for
each edge e and timestamp t, which costs another O(T |E|)
space, and (3) each step of compADS+ is basically based on
the converted graph ~H , with the space complexity being the
size of ~H , i.e., O(|V ′|+ |E′|).

Note that here (1) h is the number of local maxima
or minima, and (2) |E′| and |V ′| are the largest numbers
of edges and nodes in all converted graphs ~H , which are
typically much smaller than |E| and |V |, respectively.
Remarks. (1) For procedure strongMerging, we also de-
velop a new design that, given a converted graph
~H(V ′, E′), improves its time complexity from O(|E′|2) [26]
to O(|E′| log2 |V ′|). (2) Different from our earlier work
FIDES [26], FIDES+ is equipped with the enhanced methods
for finding the top–k time intervals (Section 3) and for com-
puting dense subgraphs from aggregate graphs (Section 4).

5 EXPERIMENTAL STUDY

Using both real-life and synthetic data, we conduct an ex-
tensive experimental study of our efficient statistics-driven
approach FIDES+ to finding dense subgraphs in large tem-
poral networks, compared with the state of the art method
MEDEN [6] and our earlier work FIDES [26].

5.1 Experimental Settings

We first introduce the settings of our experimental study.
Datasets. We chose three datasets to test our approach.
(1) BJDATA is a real-life dataset that records the dynamic
traffic condition of the road network in Beijing. Its road
traffic conditions (+2: congested, +1: slow, and −1: fast)
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were collected by taxies with GPS sensors, and were updat-
ed every 5 minutes. Here we consider day level data with
289 snapshots in total. Hence, BJDATA is very large, and has
23,724,877 nodes and 31,280,782 edges.
(2) SYNDATA is produced by the synthetic data generator
developed in [6]. The generator first produces a temporal
graph with n nodes, m edges and T snapshots using the
random graph model, where all edge weights are first set to
−1. It then activates a seed edge at random whose weight is
set to +1. After this, its neighboring edges and its copy in the
next snapshot are activated based on probabilities npr and
tpr , respectively. All activated edges will perform the same
process, with decayed npr and tpr . The process is repeated
until the graph reaches a fixed activation density adr , the
percentage of activated edges in all snapshots. Rates npr ,
tpr and adr are fixed to 0.3, 0.9 and 0.3 by default, and the
number m of edges is fixed to 2n.
(3) BENCHDATA contains four groups of 114 benchmark
small graphs, i.e., aggregate graphs, whose optimal dense
subgraphs are known in advance [25].
Algorithms and implementation. Algorithms were all im-
plemented with Java, including the state of the art algorithm
MEDEN and the synthetic data generator [6]. Parameter δ
for computing local maxima/minima was selected in a way
such that local maxima/minima caused by slight fluctua-
tions in the cohesive density curve were filtered, which was
fixed to 4. Parameter r in both FIDES+ and FIDES was fixed
to 4 to reach stable results. Both δ and r are small constants
for a balance between effectiveness and efficiency.

All experiments were run on a PC with 2 Intel Xeon E5–
2630 2.4GHz CPUs and 64 GB of memory. When quantity
measures are evaluated, the test was repeated over 5 times
and the average is reported here.

5.2 Experimental Results
We next present our findings.
Exp-1. Verification of the evolving convergence phe-
nomenon. In the first set of tests, we show the rationale of
the evolving convergence phenomenon, which justifies the
way how we identify the top–k time intervals.

Given a temporal graph G(V,E,W ), we define a metric
pEC =

∑T
t=2 max{|E≥(t)|, |E≤(t)|}/(|E|(T − 1)) (i.e., the

proportion of edges that satisfy the evolving convergence
phenomenon) to measure to what degree temporal graph
G obeys the phenomenon, in which |E≥(t)| and |E≤(t)|
denote the numbers of edges e ∈ E with W t(e) ≥ W t−1(e)
and W t(e) ≤W t−1(e), respectively.

The pEC are 96% on BJDATA and 90% on average
on all tested SYNDATA, respectively, which justifies our
observation of the evolving convergence phenomenon.
Exp-2. Algorithms compADS+ vs. topDown and compADS.
In the second set of tests, we compare the effectiveness
and efficiency of algorithm compADS+ with topDown and
compADS, which compute the dense subgraphs on aggre-
gate graphs given time intervals, and are called by FIDES+,
MEDEN and FIDES, respectively.
Exp-2.1. To evaluate the impacts of the number Tti of snap-
shots in the time intervals of aggregate graphs, we varied Tti
from 50 to 289 for BJDATA and from 200 to 2,000 for SYN-
DATA, respectively. We used the entire BJDATA, and fixed

SYNDATA with n = 100,000, T = 2,000 and adr = 0.3. For
fairness, we computed the average results of 20 aggregate
graphs with distinct time intervals for each Tti, except the
largest Tti for BJDATA, shown in Figs. 13(a)–13(d).

When varying Tti, the cohesive density scores of the
subgraphs found increase with the increment of Tti, as
the data has temporal contiguity of positive weight edges.
Further, the dense subgraphs found by compADS+ are con-
sistently better than those by topDown and compADS, i.e.,
(+0.37%, +0.20%) and (+0.04%, +0.16%) on average better
on (BJDATA, SYNDATA), respectively.

The running time of all algorithms is insensitive to the
number Tti, as the aggregate graphs are basically the same,
in terms of both their sizes and structures. However, algo-
rithms compADS+ is much more efficient than topDown,
and is (76, 26) and (1.17, 1.11) times faster than topDown
and compADS on (BJDATA, SYNDATA), respectively. Recall
that converted graphs and the strong merging technique
reduce the sizes of aggregate graphs, which speeds up the
computation. Further compADS+ has a time complexity
better than compADS, and is faster than compADS.

Exp-2.2. To evaluate the impacts of the graph size n, we
varied n from 50,000 to 400,000 on SYNDATA, while fixed
T = 2,000 and adr = 0.3. For fairness, we used the average
result of 100 aggregate graphs by randomly generating 100
time intervals for each graph size. The results are reported
in Figs. 13(e) & 13(f). We did not report topDown on graphs
with n ≥ 150,000, as it ran out of memory.

When varying n, the cohesive density scores of the
subgraphs found by all algorithms obviously increase with
the increment of n, and compADS+ is consistently better
than topDown (+0.17% on average) and compADS (+0.13%
on average), respectively.

When varying n, the running time of all algorithms
increases with the increment of n. Algorithm compADS+

is much faster than topDown, and is 22 and 1.15 times faster
than topDown and compADS, respectively.

Exp-2.3. To evaluate the impacts of the activation density
adr, we varied adr from 0.05 to 0.35 on SYNDATA, while
fixed n = 100,000 and T = 2,000. Due to the way that the
synthetic generator works, it is already relatively dense in
terms of positive weight edges even when adr is 0.35. Note
that adr was fixed to 0.1 in [6]. For fairness, we also used
the average results for each adr, the same as Exp-2.2, which
are reported in Figs. 13(g) & 13(h).

When varying adr, the cohesive density scores of the
subgraphs found by all algorithms obviously increase with
the increment of adr , and compADS+ is consistently better
than topDown (+6.10% on average) and compADS (+0.26%
on average), respectively. Algorithm compADS+ performs
significantly better than topDown when adr ≤ 0.2, which is
due to our three well-tuned optimization techniques.

When varying adr , the running time of both compADS+

and compADS first increases and then decreases, while the
one of topDown increases. This is because (a) there are more
positive weight edges for larger adr , and (b) procedure
convertAG and the strong merging technique become more
effective on reducing the graph sizes when there are more
positive weight edges. Finally, compADS+ is 33 and 1.28
times faster than topDown and compADS, respectively.
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Fig. 13. compADS+ vs. topDown and compADS, where numbers represent the improvement (%) over topDown (top) and compADS (bottom).

Exp-3. Algorithms FIDES+ vs. MEDEN and FIDES. In
the third set of tests, we compare the effectiveness and
efficiency of our approach FIDES+ with the state of the
art method MEDEN and FIDES. In addition to the three
factors evaluated in Exp-2, we further test the impacts of
the number k of time intervals used in both FIDES+ and
FIDES. By default, k is set to 10. Due to the superiority of
compADS+ over topDown as shown in Exp-2, FIDES+ may
produce denser subgraphs than MEDEN, despite the limited
number of verified time intervals.
Exp-3.1. To evaluate the impacts of the number T of snap-
shots of temporal graphs, we varied T from 50 to 289 for
BJDATA and from 200 to 2,000 for SYNDATA, respectively.
We fixed k = 10, and used the same setting as Exp-2.1. The
results are reported in Figs. 14(a)–14(d).

When varying T , the cohesive density scores of the sub-
graphs found by all algorithms increase with the increment
of T . Moreover, the dense subgraphs found by FIDES+ are
consistently better than those by MEDEN and FIDES, i.e.,
(+0.37%, +0.16%) and (+0.07%, +0.13%) on average better
on (BJDATA, SYNDATA), respectively.

When varying T , the running time of all algorithms
obviously increases with the increment of T . Moreover,
FIDES+ is consistently much faster than MEDEN, and is
(2,978, 1,861) and (2.39, 1.18) times on average faster than
MEDEN and FIDES on (BJDATA, SYNDATA), respectively.
Algorithm FIDES+ is much faster than FIDES on BJDATA
when T ≤ 150 since the number of returned time intervals
is less than the one of the previous FIDES in [26].
Exp-3.2. To evaluate the impacts of the parameter k, we
varied k from 2 to 22. We used the same setting as Exp-2.1
for T , n and adr . Algorithm MEDEN uses k time intervals to
estimate a lower bound for pruning (line 4, Fig. 2), and k has
impacts on the running time, but not the quality of the dense
subgraphs found. The results are reported in Figs. 14(e)–
14(h). We simply plotted red markers ∗ in Fig. 14(h) when
MEDEN could not finish the tests in 2 days.

When varying k, the dense subgraphs found by FIDES+

and FIDES are insensitive to k when k is no less than 2 and
10, respectively. The dense subgraphs found by FIDES+ are

(+0.20%, +0.15%) and (+0.05%, +0.11%) better than those by
MEDEN and FIDES on (BJDATA, SYNDATA) when k ≥ 10.

When varying k, the running time of MEDEN decreases,
while the one of FIDES+ and FIDES increases, with the
increment of k. Algorithm MEDEN could not finish the
test in 2 days on SYNDATA for k = 2 as it used a non-
effective lower bound. Moreover, FIDES+ is consistently
much faster than MEDEN. Indeed, FIDES+ is (15,699, 3,791)
and (-0.02, 1.29) times faster than MEDEN and FIDES on
(BJDATA, SYNDATA) on average, respectively. Algorithm
FIDES+ takes more time for identifying top–k time intervals
than FIDES, and is slower when k is small.
Exp-3.3. To evaluate the impacts of the graph size n, we
used the same setting as Exp-2.2 and fixed k = 10. We did
not report MEDEN on graphs with size 150,000 or larger,
as it ran out of memory, and could not finish the tests. The
results are reported in Figs. 14(i) & 14(j).

When varying n, the cohesive density scores of sub-
graphs found by all algorithms increase with the increment
of n, and FIDES+ is better than MEDEN (+0.18% on aver-
age) and FIDES (+0.16% on average) in our tests.

When varying n, the running time of all algorithms obvi-
ously increases with the increment of n. Moreover, FIDES+

is consistently much faster than MEDEN, and is 2,626 and
1.06 times faster than MEDEN and FIDES on average, in our
tests. Moreover, FIDES+ could finish in 126 seconds when
the graph size reaches 400,000, while it already took MEDEN
23,180 seconds on graphs with 50,000 nodes only.
Exp-3.4. To evaluate the impacts of the activation density
adr, we used the same setting as Exp-2.3 and fixed k = 10.
The results are reported in Figs. 14(k) & 14(l). Note that
MEDEN ran out of memory when adr was 0.05 or 0.25, as
in these cases there were too many unpruned time intervals
to verify, and too much space to store the aggregate graphs.

When varying adr , the cohesive density scores of sub-
graphs found by all algorithms increase with the increment
of adr, and FIDES+ is consistently better than MEDEN
(+0.28% on average) and FIDES (+0.67% on average) in our
tests. Algorithm FIDES+ is more robust to adr than FIDES,
which is worse than MEDEN when adr is 0.1 or 0.2.
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Fig. 14. FIDES+ vs. MEDEN and FIDES, where numbers represent the improvement (%) over MEDEN (top) and FIDES (bottom).

When varying adr , the running time of MEDEN first
increases and then decreases. This is due to the impacts of
the pruning technique of MEDEN. Note that here adr = 0.3 is
a turning point for MEDEN, as it happens that the estimated
bounds of MEDEN are not very effective when adr = 0.3.
The running time of FIDES+ and FIDES is quite stable w.r.t.
adr. Further, FIDES+ is much faster than MEDEN, and is
1,486 and 1.13 times faster than MEDEN and FIDES on
average, in our tests, respectively.

Exp-4. Performance of optimization techniques. In the
fourth set of experiments, we test the performance of the
three optimization techniques. We implement four alterna-
tives to algorithm compADS+ using different sets of opti-
mization techniques. More specifically, algorithm SP only
uses the strong pruning technique, SPBP uses strong prun-
ing and bounded probing, SMSP uses strong merging and
strong pruning, and, finally, OptAll uses all optimization
techniques. Note that strong pruning is a basic technique
and is used in all cases, and algorithm compADS+ returns
the better result of algorithms SPBP and OptAll. We tested
the effectiveness and efficiency using the same settings as
Exp-2. The results are reported in Fig. 15.

When varying number Ti of snapshots in the time in-
tervals, graph size n and activation density adr , algorithm
OptAll consistently performs the best in all our tests. The
cohesive density scores of subgraphs found by (SPBP,
SMSP, OptAll) are (+0.13%, +0.23%, +0.31%) and (+0.05%,
+0.19%, +0.20%) better than the ones by SP on BJDATA and
SYNDATA on average when varying Ti, and are (+0.03%,
+0.15%, +0.16%) and (+4.67%, +1.86%, +6.27%) better than

SP on SYNDATA on average when varying n and adr .
On the other hand, algorithm OptAll costs the most time,
followed by algorithms SMSP, SPBP and SP, respectively.
The running time of (SP, SPBP, SMSP, OptAll) is (78ms,
120ms, 175ms, 190ms) and (265ms, 468ms, 637ms, 821ms) on
BJDATA and SYNDATA on average when varying Ti, and
is (649ms, 1,229ms, 1,495ms, 1,997ms) and (246ms, 375ms,
543ms, 624ms) on SYNDATA on average when varying n
and adr , respectively. That is, the more optimization tech-
niques are used, the better dense subgraphs are found, at an
affordable extra time cost.
Exp-5. Closeness to optimality. (1) One may want to know
the closeness to the optimal solutions of compADS+ and
FIDES+. However, as shown by Proposition 1, computing
the optimal dense subgraphs is infeasible even for aggregate
graphs. Hence, we used the small graphs of BENCHDATA
with known optimal dense subgraphs [25]. The cohesive
density scores of subgraphs found by compADS+ are (92%,
94%, 94%, 91%) of the optima of groups (K, P, C, D) on aver-
age, respectively. In contrast, topDown and compADS obtain
an average performance of (83%, 87%, 87%, 84%) and (92%,
94%, 92%, 90%) on the four groups. (2) Roughly speaking,
the solutions of FIDES+ are around 85% of the optima on
average, as FIDES+ is slightly better than MEDEN, which
achieves a performance of 85% of the optima [6].
Summary. From these tests we find the following.
(1) The evolving convergence phenomenon is quite com-
mon. Indeed, there are 96% and 90% of edges satisfying the
phenomenon on BJDATA and SYNDATA, respectively.
(2) The quality of the dense subgraphs found by compADS+
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Fig. 15. Performance of optimization techniques

is consistently better than those by topDown and compADS,
i.e., (+0.28%, +0.17%) and (+0.04%, +0.13%) on (BJDATA,
SYNDATA) on average, respectively. Further, compADS+ is
(76, 22) times faster than topDown on (BJDATA, SYNDATA),
and is comparable to compADS in terms of efficiency. Fi-
nally, topDown already ran out of memory for graphs with
150,000 nodes and 2,000 snapshots.
(3) The quality of the dense subgraphs found by FIDES+

is consistently better than those by MEDEN and FIDES,
i.e., (+0.20%, +0.15%) and (+0.05%, +0.11%) on (BJDATA,
SYNDATA) on average, respectively, while FIDES is worse
than MEDEN in some cases. Further, FIDES+ is (2,978,
1,486) times faster than MEDEN on (BJDATA, SYNDATA) on
average, and is comparable to FIDES in terms of efficiency.
Finally, MEDEN already ran out of memory for graphs with
150,000 nodes and 2,000 snapshots.
(4) The three characteristics of time intervals (i.e., Proposi-
tion 2, Fact 1 and Heuristic 2 in Section 3) together assure a
pretty good estimation of the time intervals involved with
dense subgraphs. Indeed, a small number of intervals, e.g.,
10, already suffice for FIDES+ to find a good solution.

6 RELATED WORK

This study extends our earlier work [26] as follows. (1)
We have improved our method by (a) enhancing the top–
k time interval estimation algorithms with an adaptive s-
moothing threshold to identify more accurate time intervals
(Section 3.2), (b) enhancing procedure strongMerging with
type-II node merging and (c) improving the complexity of
strongMerging with a better data structure (Section 4.3). (2)
We have added (a) a comparison with our previous ap-
proach [26] and (b) new tests on our optimization techniques
(Section 5). (3) We have also provided the details of proce-
dure boundedProbing (Section 4.3) and proofs (Appendix).
Dense subgraphs in static networks. Dense subgraphs are a
general concept and have been widely studied. The concrete
semantics highly depend on the problems and applications,
such as cohesive subgraphs like maximal cliques, n-clique,
k-core and n-clan [32], [36], the prize collecting Steiner

tree [13], [23], bump hunting on graphs [17], and densities
defined in terms of the numbers or weights of edges and
nodes [2], [3], [15]–[17], [24].

Our work adopts the strong pruning technique intro-
duced in [23] for finding a better subgraph in aggregate
graphs, by building the connection between finding the
subgraph of an aggregate graph with the highest cohesive
density and finding the maximum net worth subtree [23].
Dense subgraphs in dynamic networks. Dense subgraphs
have also been recently investigated in temporal networks
under various terms, such as anomalies [5], [7], heavy
subgraphs [6], dense subgraphs [4], [9], [31] and network
processes [30]. However, they typically refer to connected
subgraphs with higher scores, defined in terms of average
degree [31] or the weights of edges and nodes in a con-
tinuous time interval. Our work adopts the definition of
dense subgraphs in [6], and is different from those in [4],
[5], [7], [9], [30], [31]. Further, the study in [4], [9] focuses
on dynamic graphs with node and/or edge updates, and,
hence, is different from ours.

Close to our work is [6] that proposed and studied the
FDS problem. We develop an efficient statistics-driven solu-
tion, totally different from the filter-and-verification method
in [6]. Moreover, the connection between the FDS and NWM
problems has never been employed in the algorithm of [6],
not to mention the approximation hardness result of the FDS
problem. Further, statistics-driven solutions using hidden
data statistics also shed light on large graph processing.
Other studies in dynamic networks. Temporal network
analysis has recently attracted more and more attentions
[1], [20], [40], such as temporal shortest paths [14], [19],
[37], temporal minimum spanning trees [22], incremental
graph pattern matching [12], graph stream analysis [38] and
continuous aggregate queries [29]. Different from these, we
study dense temporal subgraphs in this work.

7 CONCLUSIONS

We have proposed FIDES+, a highly efficient approach
employing hidden data statistics to finding dense subgraphs
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in large temporal networks. First, we have employed the
data characteristics to effectively identify k time intervals
from a total of T (T +1)/2 ones, in which T is the number of
snapshots and k is typically much smaller than T . Second,
we have developed better algorithm heuristics to solve
the problem. Finally, we have experimentally verified that
FIDES+ finds better dense subgraphs than the state of the
art method MEDEN [6], and is much more scalable.

A couple of issues need further study. We are to apply
our approach to temporal graphs with node/edge updates,
and extend our techniques to find top–k dense subgraphs.

APPENDIX: PROOFS

Proof of Proposition 2: Assume without loss of generality,
the time interval [i, j] has a dense subgraph. We only need to
consider the case when there are no local maxima between
i and j. Let i′ be the largest point with i′ ≤ i and j′ be
the least point with j′ ≥ j, if there exist, such that the
cohesive density curve has a local maximum at points i′

and j′. Otherwise, we simply let i′ = i or j′ = j. Note that
there must exist at least one of i′ and j′ in this case.

By the evolving convergence phenomenon and the def-
inition of dense subgraphs, time interval [i′, j′] has a sub-
graph whose cohesive density is no less than the dense
subgraph of interval [i, j]. We thus have the conclusion. 2

Proof of Theorem 3: We first present the definition of AFP-
reduction and then show that there exists an AFP-reduction
(h, g) from the NWM problem to the FDS problem. The
conclusion follows since the NWM problem is NP-hard to
approximate within any constant factor [13], [23].
(1) Let Π1 and Π2 be two maximization optimization prob-
lems. An AFP-reduction from Π1 to Π2 is a pair of PTIME
functions (h, g) that satisfies the following:

(a) for any instance I1 of Π1, I2 = h(I1) is an instance
of Π2 such that opt

2
(I2) ≥ opt1(I1), where opt1(I1)

(respectively opt2(I2)) is the value of an optimal
solution to I1 (respectively I2), and

(b) for any feasible solution s2 to I2, s1 = g(s2) is a
feasible solution to I1 such that obj1(s1) ≥ obj2(s2),
where obj1() (respectively obj2()) is a function mea-
suring the value of a solution to I1 (respectively I2).

(2) We next construct algorithm h. Given an instance I1 of
NWM as its input, algorithm h outputs an instance I2 of
FDS on an aggregate graph. The instance I1 consists of a
graph G(V,E) with a non-negative node weight p(v) for
each node v ∈ V and a non-negative edge weight w(e)
for each edge e ∈ E. Algorithm h constructs the instance
I2 consisting of an aggregate graph Ĝ(V ∪ V ′, E ∪ E′,Wa)
such that (a) for each node v ∈ V of G, it adds a new node
v′ and a new edge ev = (v, v′) to Ĝ with Wa(ev) = p(v), and
(b) for each edge e ∈ E of G, it sets Wa(e) = −w(e) in Ĝ.
That is, aggregate graph Ĝ has 2× |V | nodes and |E|+ |V |
edges, and, hence, algorithm h runs in PTIME.
(3) We then construct algorithm g. Given a feasible solution
s2 to I2, i.e., a subgraph Ĥ(Vs, Es,Wa) of Ĝ, algorithm
g outputs a solution s1 of the NWM instance I1. Algo-
rithm g first produces a subgraph H(V ′s , E

′
s) of G from

Ĥ(Vs, Es,Wa) by (a) removing all the nodes v′ not in G and
their incident edges (v, v′), (b) assigning all the remaining
nodes with the same node weights as in G, and (c) setting

w(e) = −Wa(e) for each remaining edge e. Then it finds and
returns a minimum spanning tree of H , which is a feasible
solution to I1. Given these, algorithm g is in PTIME as well.
(4) By the constructions of algorithms h and g above, it is
easy to see that opt

2
(I2) = opt1(I1) and obj1(s1) ≥ obj2(s2).

Hence, (h, g) is indeed an AFP-reduction from the NWM
problem to the FDS problem.

Putting these together, we have the conclusion. 2

Proof of Proposition 4: The equivalence can be proved by
showing that the dense subgraph in an aggregate graph can
be used to construct the maximum net worth subtree in the
corresponding converted graph, and vice versa.

Observe that the dense subgraph SG of an aggregate
graph Ĥ contains the entire CCi (line 2, Fig. 5) if any
edge of CCi is included in SG, and these components are
further linked by edges of convertAG(Ĥ) (lines 6–7, Fig. 5).
Hence, convertAG(SG) is a subtree of convertAG(Ĥ) whose
net worth equals to cden(SG). Moreover, any subtree ST
of convertAG(Ĥ) can construct a subgraph of Ĥ whose
cohesive density equals to NW (ST ).

Given the dense subgraph SG of an aggregate graph Ĥ ,
subtree convertAG(SG) must be the maximum net worth
subtree of convertAG(Ĥ). Otherwise, a subtree ST ∗ with a
higher net worth exists and can construct subgraph SG∗

of Ĥ with a higher cohesive density. Similarly we can
prove that given the maximum net worth subtree ST of
convertAG(Ĥ), subgraph SG corresponding to ST must be
the dense subgraph of Ĥ . We thus have the conclusion. 2

Proof of Proposition 5: Let T be the merged MST of
two MSTS T1(V1, E1) and T2(V2, E2) in the process of
strongMerging. We first show that it suffices to consider a T
consisting of edges of T1 and T2 and those between T1 and
T2 only. Without loss of generality, assume that T contains
an edge e = (u, v) with u, v ∈ V1 and e 6∈ E1. Adding e into
T1 forms a cycle u/ · · · /v/u in T1. Given the fact that T1 is
an MST, the weight of e must be the maximum among all
edges in the cycle. And, hence, edge e of T can be replaced
by an edge in the cycle without increasing the total weight
of T . Similarly, there is no need to consider edges e = (u, v)
with u, v ∈ V2 and e 6∈ E2.

From above, it is easy to see that merging T1 and T2 is
equivalent to maintaining an MST in a graph T1 ∪ T2 after
inserting the edges between V1 and V2. Using dynamic trees,
it takes O(log(|V1| + |V2|)) time to deal with an edge [34].
Hence, the extra cost is bounded by O(|E′| log |V ′|). 2

Proof of Corollary 6: Procedure strongPruning is essentially
the same as the BEST-SUBTREE pruning procedure (Fig. 2-
5) in [28], except that the latter recursively finds the subtree.
Note that Theorem 2.8 in [28] proves that the returned
subtree ST obtains the optimal net worth among all possible
subtrees of T . We next show that procedure strongPruning
runs in O(|VT |) time. It first traverses the tree from the root
in a breath-first manner, and updates nw(u) in the reverse
traversal order. Finally, strongPruning extracts and returns
the subtree rooted at the node with the maximun nw(u). All
these operations together can be done in O(|VT |) time. 2
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