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Human mobility annotation aims to assign mobility records the corresponding visiting Point-of-Interests

(POIs). It is one of the most fundamental problems for understanding human mobile behaviors. In literature,

many efforts have been devoted to annotating mobility records in a pointwise or trajectory-wise manner.

However, the user preference factor is not fully explored and, worse still, the mobile peer influence fac-

tor has never been integrated. To this end, in this article, we propose a novel framework, named JEPPI, to

jointly exploit user preference and mobile peer influence to tackle the problem. In our JEPPI, we first unify

the two distinct factors in a behavior-driven user-POI graph. This graph enables us to model user prefer-

ence with user-POI visiting relationships, and model two types of mobile peer influence with co-location

and co-visiting peer relationships, respectively. Moreover, we devise an equivalence-emphasizing metric to

reduce redundancy in the second-order co-visiting peer influence. In addition, a mutual augmentation learn-

ing approach is proposed to preserve the latent structures of various factors exploited. Notably, our learning

approach preserves all factors in a shared representation space such that user preference is learned with

mobile peer influence being considered at the same time, and vice versa. In this way, the different factors

are mutually augmented and semantically integrated to enhance human mobility annotation. Finally, using

two large-scale real-world datasets, we conduct extensive experiments to demonstrate the superiority of our

approach compared with the state-of-the-art annotation methods.
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1 INTRODUCTION

A fundamental problem in human mobile behavior understanding is mobility annotation, which
assigns mobility records the corresponding visiting Point-of-Interests (POIs). Figure 1 illustrates
such an example, where mobility records of a user are represented as a series of spatiotemporal
points and we aim to assign POIs to records that are produced when the user is visiting these POIs.
Since POIs carry rich semantics, identifying the visiting POIs is crucial to bridge the gap between
the semantic-free mobility data and the deep understanding of human behaviors. Afterward, the
semantic information of POIs can facilitate a lot of mobility- and POI-related applications, ranging
from visit purpose detection [25] and demand modeling [16] to POI and trip recommendation [2].

Recently, human mobility annotation has attracted attention from both academia and industry.
The industrial solutions require much user participation and are usually insufficient. Existing so-
lutions in literature either ignore [1, 19, 21] or could not fully explore [28, 31] the personalized
preference for visiting POIs. In addition, all these approaches do not consider the effect of user
interactions in mobile behaviors, i.e., mobile peer influence. Please note that the mobile peer influ-
ence refers to the true influence on real life POI-visiting behaviors between people, and is different
from the peer influence in cyberspace like social media.

On the other hand, incorporating user preference and mobile peer influence has great potential
for the task. Our first observation is that user preference has complex and significant impacts on
choosing POIs. These preference patterns usually remain latent and hard to be captured by explicit
statistics or rules developed in [19, 28]. More importantly, modeling mobile peer influence between
users can very likely provide extra clues as POI-visiting behaviors have intrinsic social attributes,
e.g., people might visit POIs together with or recommended by others. To illustrate our insight,
we present a real-world example in Figure 2, in which four mobility records of user u0 are to be
annotated with POIs p0–p3. The advantages of combining the two factors are three-fold:

(i) The visiting relationship (u0,p1) is the clue for annotating with p1 and the peer relation-
ships betweenu0 andu1/u2 consolidate the evidence given the preference ofu1 andu2 for
p1.

(ii) We do not have direct clues for p2 and p3. However, the peer relationships between u0

and u3–u5 can provide some evidence if user preference and mobile peer influence are
jointly considered.

(iii) It is difficult to annotate the mobility record with p0. In this case, a promising choice is
to infer a POI according to the preference of other users “similar” to u0.

To this end, in this article, we propose a novel framework, named JEPPI, to Jointly Exploit user
Preference and mobile Peer Influence for human mobility annotation. Simultaneously exploiting
these two factors in an effective way is challenging both because user preference usually differs
from person to person and because peer influence remains unexplored. To unify the two distinct
factors, we construct a behavior-driven user-POI graph from mobility data (see Figure 2 for an
example). More specifically, we model user preference with user-POI visiting relationships and
model two types of mobile peer influence with co-location and co-visiting peer relationships,
respectively. Note that co-visiting mobile peer influence is essentially a kind of second-order
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Fig. 1. An example of human mobility annotation, where green (x1, x3, x4, and x6) and red (x2 and x5) points

represent mobility records produced when the user is at staying and moving statuses, respectively.

Fig. 2. Illustration of exploiting user preference and mobile peer influence for human mobility annotation.

proximity. To reduce redundancy, we devise an equivalence-emphasizing metric which empha-
sizes peer influence between users that have equivalent POI-visiting patterns. We then develop a
mutual augmentation learning approach which assigns latent representations to users and POIs,
and optimizes the shared representations iteratively and sequentially with the two factors. That
is, we preserve user preference with mobile peer influence being considered, and vice versa. With
this unique design, these factors are mutually augmented and semantically integrated. We finally
combine the representations and a simple yet effective Bayesian candidate generation method for
human mobility annotation. To summarize, we make the following contributions in this article:

—We identify an important mobile peer influence factor in human mobile behaviors and in-
ventively propose to jointly exploit user preference and mobile peer influence for the fun-
damental and practical human mobility annotation task.

—We propose the JEPPI framework to tackle the problem. It utilizes mutual augmentation
learning on a behavior-driven user-POI graph to organically integrate user preference and
two types of mobile peer influence for boosting annotation effectiveness.

—We conduct extensive experiments on two large real-world datasets to demonstrate the
superiority of JEPPI, compared with state-of-the-art competitors.

The remaining of the article is organized as follows. We discuss related work in Section 2 and
formalize our problem in Section 3. The details of our JEPPI framework are described in Section 4,
followed by experiments in Section 5 and conclusion in Section 6.

2 RELATED WORK

Mobile behavior understanding. Mobile analytics can greatly improve our understanding of
human mobility patterns, such as sequential pattern [20] and periodic pattern [36]. Moreover, it is
also helpful to obtain deep insights into urban dynamics. For instance, [11, 23, 26] study mobility
along with social ties from a spatiotemporal perspective. People’s daily need information could
be identified from mobility data to enable POI demand modeling [16]. Hu et al. [9] develop a
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user decision profiling model to identify the key factors behind people’s decisions on choosing
POIs, which directly facilitates to understand human mobile behaviors. Enriching mobility data
with semantics is also among popular, e.g., [7, 25, 29] and ours. Wu et al. [29] study semantic
annotation such that each mobility record is enhanced with semantics retrieved from social media.
Wang et al. [25] detect trip purpose of taxi trajectories. User interest discovery is explored in [7],
which also utilizes the rich semantics contained in user-generated contents.

Different from the above studies, our work aims to identify POIs associated with mobility
records. The mobility data is thus enriched with semantics embedded in POIs, which can facil-
itate a wide range of mobility- and POI-related applications.

Human mobility annotation is an important step towards better understanding of mobility,
e.g., a rich mobility dataset has been constructed recently [17], which contains ground-truth POIs
as labels. Location-based services (such as Foursquare1) and crowdsourcing platforms [34] provide
a partial annotation solution, by allowing people to share their locations along with the visiting
POIs. The problem has also been investigated in literature either in a pointwise manner such that
each mobility record is processed independently [1, 19, 21], or in a trajectory-wise manner that
considers a trajectory produced by a single user at one time [28, 31]. These approaches have already
exploited user preference in a number of ways. For instance, Shaw et al. [19] design a set of features
for candidate POIs, which include the number of historical visits by a user to a POI for modeling
preference, and annotate mobility records through learning-to-rank. Markov random field could
also capture preference by enforcing consistency in individuals’ POI-visiting behaviors [28]. Be-
sides preference, Hidden Markov model is utilized to capture transitional patterns [31]. However,
mobile peer influence that we consider remains ignored in all existing methods. Moreover, we pro-
pose a mutual augmentation learning approach to jointly exploiting user preference and mobile
peer influence, which is totally different from the previously-used models.

On the other hand, human mobility annotation bears similarity with POI or location recommen-
dation that has been extensively studied [5, 13, 15, 30, 32, 37]. Note that only [13, 32] consider peer
influence. However, the peer influence is drawn from explicit social relationships and is learned
separately, whereas we collect peer relationships from user mobile behaviors and jointly learn user
preference and mobile peer influence for mutual augmentation.

Network embedding has become an emerging technique for network-centric analysis [3]. Typ-
ical embedding models are mainly based on random walks, e.g., node2vec [6], Graphgan [24], and
metatpath2vec [4], and based on pairwise proximities, e.g., LINE [22]. Notably, Qiu et al. [18] unifies
a number of approaches in matrix factorization. Embedding models are also proposed to preserve
advanced network information, e.g., asymmetric proximity [38], community structures [27], and
dynamism [39]. This technique has been successfully applied in various tasks such as anomaly
detection [8] and transportation recommendation [14]. Our embedding model is essentially based
on LINE [22] for proximity preserving, while it adopts a mutual augmentation design.

3 PROBLEM DEFINITION

In this section, we introduce the related concepts and formalize our problem. Let a spatiotemporal
point x = (l , t ) be a pair of location l (e.g., latitude and longitude) and timestamp t .

Definition 1 (Mobility Records). The mobility recordsMu of user u are a series of ordered spa-
tiotemporal points generated by user u, i.e., Mu = [x1,x2, . . . ,xL], where L is the length of Mu

and the timestamps satisfy t1 < t2 < · · · < tL .

1https://foursquare.com/.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 67. Publication date: September 2020.

https://foursquare.com/


Exploiting User Preference and Mobile Peer Influence for Human Mobility Annotation 67:5

Fig. 3. Overview of our JEPPI framework.

Basically, human mobility annotation aims to assign POIs to mobility records. In some cases,
e.g., on Foursquare, each record is generated when people visit POIs and can be annotated directly.
While in other scenarios, e.g., with raw Global Positioning System data, mobility records include
moving spatiotemporal points that are generated when people move from one place to another.
Obviously, moving points do not correspond to any meaningful POIs and should be filtered out
before annotation. This can be achieved by detecting stays [10, 12] in mobility records and only an-
notating records included in stays. Each stay represents a continuous subseries of spatiotemporal
points that are both spatially- and temporally-close and span for a period of time. Following [10],
stay detection for a single user can be done in linear, i.e., O (L), time by enumerating a beginning
point (say xi ) and finding the longest subseries [xi , . . . ,x j ] that satisfies the stay conditions.

Hereinafter, without loss of generality, we assume that each mobility record is associated with
a POI. For instance, the mobility record x1 in Figure 1 is generated when u is at home, x3 and x4

are produced whenu works at the company, and, finally, x6 is associated with a bar. These POIs, as
well as the embedded semantics, are informative for understanding people’s mobility patterns. In
practice, the POIs of a fraction of mobility records are easy to obtain, e.g., people may occasionally
check-in at certain POIs on social media. Based on the known POIs, we are looking forward to
annotating the rest records. Formally, our problem is as below.

Problem 1 (Human Mobility Annotation). Given a set of mobility recordsMu of users u ∈ U
and a set P of POIs, human mobility annotation aims to annotate each record, that has unknown

visiting POIs, with the top-k most likely visiting POIs Ps ⊂ P.

4 METHODOLOGY

To tackle the problem, we propose a JEPPI framework which integrates user preference and mobile
peer influence with mutual augmentation learning.

4.1 Framework Overview

The overview of JEPPI is illustrated in Figure 3. It consists of the following five main components:

—The input of JEPPI is a set of mobility records and a set of POIs.
—Behavior-driven graph construction derives user preference and mobile peer influence from

users’ mobile visiting, co-location, and co-visiting behaviors, and encodes them in a
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user-POI graph. An equivalence-emphasizing metric is devised to quantify co-visiting peer
influence. This component enables to exploit the distinct factors in a unified way.

—Mutual augmentation learning is the core of JEPPI which integrates the various factors into
a shared representation space. It assigns a latent representation vector to each user and each
POI, and updates the representations sequentially and iteratively with user preference and
two types of mobile peer influence.

—Bayesian candidate generation fuses the spatial influence and POI prior with a simple
Bayesian method to identify candidate POIs for mobility records. In this way, these basic
factors are further incorporated for human mobility annotation.

—Human mobility annotation combines the learned representations and candidate POIs to
obtain the output, i.e., associated POIs of mobility records.

In the following, we introduce these components in details.

4.2 Behavior-driven Graph Construction

We construct a heterogeneous user-POI graph G = (U ∪ P,Ev ∪ Ecol ∪ Ecov ,w ). In this graph,
each node denotes either a user or a POI. The visiting relationships Ev ⊂ U × P encode users’
preference for POIs, while Ecol ,Ecov ⊂ U ×U are two sets of peer relationships reflecting mobile
peer influence between people. Finally, w is the edge weight function.

More specifically, we constructG in a behavior-driven manner. Recall that a fraction of mobility
records are annotated with POIs in advance. Relationships in Ev are then derived from annotated
records. Suppose that a record of useru is associated with POI p. We then form an edge (u,p) ∈ Ev

to record the fact that user u has visited POI p and, thus, has preference for p. Intuitively, the more
frequently u visits p, the stronger the preference is. Hence edge weight w (u,p) is introduced to
distinguish the various levels of preference, and w (u,p) is set to the number of visits from user u
to POI p. We note that, although visiting behaviors are usually sparse, it is very likely that a large
proportion of weights w (u,p) will exceed 1 due to the periodicity of human mobility [36].

While numerous peer relationships are formed in online social media, they do not necessarily
lead to peer influence in real life POI-visiting behaviors. On the other hand, mobility data itself is a
good source for mining mobile peer influence. Thus, we also turn to directly collect peer relation-
ships from user mobile behaviors. Here we consider two types of behaviors reflecting mobile peer
influence, i.e., co-location and co-visiting, and derive Ecol and Ecov , respectively. Basically, there is
an edge (u,u ′) ∈ Ecol /Ecov if bothu andu have located at the same places or visited the same POIs.
It is worth noting that co-visiting peer influence is essentially a kind of second-order proximity for
visiting preference. To reduce redundancy, we devise an equivalence-emphasizing metric which
assigns a high peer influence weight to two users when they have equivalent/similar POI-visiting
patterns. We put off the details of peer relationship construction and the metric to Section 4.3.2
since they are deeply coupled with mobile peer influence learning.

4.3 Mutual Augmentation Learning

After graph construction, the various hidden factors are integrated via mutual augmentation learn-
ing. To be specific, all users and POIs are embedded in a shared d-dimensional space Rd . Figure 4
presents an example of user and POI representations (d = 2). Each representation can be regarded
as a point in the hidden space. Recall in Figure 1 that the user (say u1) has mobility records as-
sociated with POIs Home, Company, and Bar. Correspondingly, u1 and the three POIs are placed
together in the representation space, as bounded by a dashed circle in Figure 4. In addition, assum-
ing users u1 and u2 have mobile peer influence on each other, they are also close in the space. User
and POI representations, i.e., their positions in the space, are not explicitly interpretable. However,
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Fig. 4. Illustration of user and POI representations in a two-dimensional hidden space.

Fig. 5. The average number of co-visiting POIs and the corresponding Jaccard index increase with the num-

ber of co-locations between users on our Beijing data.

their pairwise proximity, e.g., inner product, captures certain information. That is, the proximity
of user representations indicates the strength of peer influence, while the proximity of user and
POI representations indicates the strength of preference.

4.3.1 Learning User Preference. We learn user preference by preserving the structure of Ev .
Formally, let u and p denote the representation vectors of user u and POI p, respectively. For each
(u,p) ∈ Ev , we minimize the following KL-divergence and negative sampling-based objective [22]:

O1 (u,p) = − logσ (u · p) −
K∑

i=1

Ep′∼DP
logσ (−u · p′), (1)

where σ (x ) = 1/(1 + e−x ) is the sigmoid function, K is the number of negative samples, and DP

is a discrete distribution for generating random POI samples p ′. We empirically evaluate the two
popular sampling distributions, i.e., uniform [38] and node-degree based [22], and find that the
uniform distribution works better for our task. Hence, we adopt DP (p) = 1/|P |.

In practice, the model is usually trained with stochastic gradient descent. We iteratively draw a
subset of both positive samples (u,p) ∈ Ev and random negative samples (u,p ′), and update the
representations by minimizing Equation (1). By drawing positive (u,p) according to w (u,p), the
users and POIs having more visiting records are placed closer.

4.3.2 Learning Mobile Peer Influence. We incorporate two types of mobile peer influence in G.
The co-location peer influence assumes that a pair of usersu andu ′ have influence on each other if
u andu ′ have co-locations. The rationale is that there usually exists a positive correlation between
co-locations and commonness of POI-visiting behaviors. We have also verified this with statistics
from our data reported in Figure 5. Specifically, let Pu and Pu′ denote the sets of POIs visited by
users u and u ′, respectively. We use the number of co-visiting POIs (i.e., |Pu ∩ Pu′ |), as well as the
Jaccard index (i.e., |Pu ∩ Pu′ |/|Pu ∪ Pu′ |), to evaluate the commonness of POI-visiting behaviors.
Figure 5 shows that both the two metrics increase with the number of co-locations between users.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 67. Publication date: September 2020.
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Fig. 6. Toy examples for co-visiting peer influence.

The increased commonness ensures that the knowledge of u can help to annotate the mobility
records of u ′ if u and u ′ have a proper number of co-locations.

Formally, we say that users u and u ′ have a co-location if there exist xi = (li , ti ) of Mu and
x ′j = (l ′j , t

′
j ) ofMu′ such that li and l ′j are spatially close (e.g., within 100 meters) and ti and t ′j are

temporally close (e.g., within 1 hour). We then form an edge (u,u ′) ∈ Ecol to record the co-location
peer relationship betweenu andu ′. Similarly, edge weightw (u,u ′), i.e., the number of co-locations
of u and u ′, is introduced to distinguish the different strength of influence.

Modeling co-location peer influence alone may suffer from data sparsity. On the other hand, a
pair of users also bear similarity if they have visited the same POIs. The above two observations
motivate us to further exploit co-visiting peer influence inspired by co-visiting behaviors. When
defining the new type of mobile peer influence, we consider the following. (i) It might be misleading
to evaluate the strength of co-visiting peer influence with the numbers of co-visiting POIs. For
instance, in Figure 6, the influence between users u3 and u4 is obviously stronger than u1 and u2,
even though u3 and u4 have less number of co-visiting POIs. Note that u3 and u4 share a strong
common interest to POI p1 while u1 and u2 do not have such a common interest. (ii) The second-
order co-visiting peer influence should avoid high redundancy with the first-order user preference.
Again in Figure 6, the proximity between u3 and u4 has already been well preserved by learning
user preference with w (u3,p1) and w (u4,p1). In contrast, the one between u5 and u6 should be
further emphasized via co-visiting peer influence.

To cope with the above requirements, we devise a novel equivalence-emphasizing metric to
evaluate the strength of co-visiting peer influence. Its main idea is to assign a high weight to
a pair of users if they have co-visited POIs for a number of times and their roles (e.g., regular
or rare visitor) w.r.t. these POIs remain largely equivalent. More specifically, we include an edge
(u,u ′) ∈ Ecov if u and u ′ have co-visited at least one POI. The weight w (u,u ′)2 is determined by:

w (u,u ′) =
∑

p

min{w (u,p),w (u ′p)} ·
∑

p,w (u,p )>0,w (u′p )>0

min
{

w (u,p )
W (u ) ,

w (u′,p )
W (u′)

}

max
{

w (u,p )
W (u ) ,

w (u′,p )
W (u′)

} . (2)

Recall that w (u,p) is the number of visits from user u to POI p, and W (u) =
∑

p w (u,p). The
first sum operator in Equation (2) counts the number of co-visiting times between two users and
the second sum operator quantifies the equivalence of two users in terms of POI-visiting. Here
w (u,p)/W (u) can be interpreted as the role of u to p: ∼1 for regular and ∼0 for rare visitor. When
the roles of u and u ′ to p are equivalent or similar, POI p has a large contribution to the equiva-
lence, regardless of the values ofw (u,p) andw (u ′,p). With Equation (2), we havew (u1,u2) = 0.44,
w (u3,u4) = 6.4 and w (u5,u6) = 8 in Figure 6, which satisfies our requirements.

2To make our notation simple, we use w (u, u′) to denote the weights of both types of peer relationships. It should be easy

to distinguish between them from the context.
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ALGORITHM 1: Mutual augmentation learning

Input: Graph G, number d of dimensions, trade-off parameters λ1, λ2, learning rate α , batch size B,

number K of negative samples, and iteration threshold Ni ;

Output: User and POI representation vectors u and p;

1 Initialize entries of u and p from unif(−0.5/d, 0.5/d );

2 iter ← 1;

3 repeat

4 Sample a batch of B visiting relationships (u,p) from Ev ;

5 foreach sampled (u,p) do

6 u← u − (1 − iter
Ni

)α (σ (u · p) − 1)p; p← p − (1 − iter
Ni

)α (σ (u · p) − 1)u;

7 Sample K negative POIs p′ ∼ DP ;

8 foreach sampled p′ do

9 u← u − (1 − iter
Ni

)ασ (u · p′)p′; p
′ ← p

′ − (1 − iter
Ni

)ασ (u · p′)u;

10 Sample a batch of B peer relationships (u,u ′) from Ecol ;

11 foreach sampled (u,u ′) do

12 u← u − (1 − iter
Ni

)αλ1 (σ (u · u′) − 1)u′; u
′ ← u

′ − (1 − iter
Ni

)αλ1 (σ (u · u′) − 1)u;

13 Sample K negative users v ∼ DU ;

14 foreach sampled v do

15 u← u − (1 − iter
Ni

)αλ1σ (u · v)v; v← v − (1 − iter
Ni

)αλ1σ (u · v)u;

16 Sample a batch of B peer relationships (u,u ′) from Ecov ;

17 foreach sampled (u,u ′) do

18 u← u − (1 − iter
Ni

)αλ2 (σ (u · u′) − 1)u′; u
′ ← u

′ − (1 − iter
Ni

)αλ2 (σ (u · u′) − 1)u;

19 Sample K negative users v ∼ DU ;

20 foreach sampled v do

21 u← u − (1 − iter
Ni

)αλ2σ (u · v)v; v← v − (1 − iter
Ni

)αλ2σ (u · v)u;

22 iter ← iter + 1;

23 until iter > Ni ;

24 return {u}, {p};

Based on Ecol and Ecov , we preserve the two types of mobile peer influence. The objective is:

O2 (u,u ′) = − logσ (u · u′) −
K∑

i=1

Ev∼DU
logσ (−u · v). (3)

Here DU (u) = 1/|U | is the discrete uniform distribution that generates negative user samples v .
Again, each trained positive (u,u ′) is drawn according to w (u,u ′).

4.3.3 Mutual Augmentation Learning. The overall objective sums over all relationships in G:

O =
∑

(u,p )∈Ev

O1 (u,p) + λ1

∑

(u,u′)∈Ecol

O2 (u,u ′) + λ2

∑

(u,u′)∈Ecov

O2 (u,u ′). (4)

where trade-off parameters λ1 and λ2 are introduced to regularize the importance of user prefer-
ence and two types of mobile peer influence.

We now explain the mutual augmentation learning process presented in Algorithm 1. It takes as
input the constructed graphG and related training parameters, and outputs user and POI represen-
tations. It first initializes all entries of representations with a uniform distribution on the interval
(−0.5/d, 0.5/d ) (line 1). Afterward, it iteratively and sequentially optimizes O with the user pref-
erence and mobile peer influence factors (lines 2–23). For each factor, it first samples a batch of B
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positive relationships such that the probability of selecting each (u,p) or (u,u ′) is proportional to
w (u,p) orw (u,u ′). For each positive sample, it then samples K negative users or POIs and updates
representations to minimize O with both positive and negative samples.

From the above analysis, it is easy to see that the time and space complexities of the algorithm
are O (NiBKd ) and O (d ( |U | + |P |)), respectively.

4.4 Annotation

Human mobility annotation should also consider basic factors like geographical distance and POI
prior. We use a Bayesian method to integrate these factors. Specifically, for each mobility record
xi = (li , ti ), we first retrieve POIs within 500 meters [28] from li . Among the retrieved POIs, we
then identify the top-Nc candidate POIs with a simple Bayesian formula. The probability that the
mobility record should be assigned POI p can be expressed according to Bayes’ theorem as follows:

Pr (p |li ) ∝ Pr (li |p)Pr (p). (5)

Following [28], we adopt an exponential function with a negative exponent to model Pr (li |p):

Pr (li |p) ∝ exp{−ϕ · dist(li ,p.l )}, (6)

where p.l is the location of p and ϕ ≥ 0 is a parameter controlling the probability decay. Such a
parameter offers robustness to the Bayesian method, i.e., a low ϕ can weaken spatial impact if posi-
tioning accuracy is low. In practice, it suffices to choose ϕ within [0.001, 0.1]: the probability halves
every (693, 6.9) meters with (0.001, 0.1), respectively. We use the numbers Qp of user interactions
with POI p, e.g., map search queries, for evaluating the prior probability Pr (p):

Pr (p) ∝ log(Qp + 1) + 1. (7)

Note that POIs having more user interactions are usually more popular for visiting.
For each of the Nc candidate POIs p, we combine the learned representations to obtain the final

annotation likelihood score:

score(p) = exp{u · p} · Pr (p |l i j ). (8)

Finally, the k candidate POIs having the top-k highest score(p) are assigned to the mobility record.

Remarks. Temporal influence also remains important for POI visiting behaviors. Accordingly,
we can incorporate a temporal factor term in the Bayesian formula in Equation (5) by modeling
the activeness of each POI at different time with user interaction data. However, we find that this
term barely has improvement upon the considered factors. Thus, we remove it for simplicity.

5 EXPERIMENTS

Using two large-scale real-world datasets, we conduct extensive experiments to demonstrate the
superiority of our JEPPI framework for human mobility annotation. We compare the effectiveness
and efficiency of JEPPI with five baseline methods and three variants of JEPPI. We also empirically
evaluate the convergence and parameter sensitivity of JEPPI and present a case study.

5.1 Experimental Setting

Datasets. We chose two datasets to test our approach.
(1) Beijing is produced based on the logs from a commercial map service platform. The ground-

truth POIs of mobility records were determined (i) with an empirical rule combining both mobility
and map search query data and (ii) by human experts. We filtered out users who had visited less
than 10 POIs and used map queries as the user interaction data for POI prior.
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Table 1. Statistics of Data

Description Beijing NYC

time spanning 6/1/18∼6/30/18 4/12/12∼2/16/13
# of users 23,227 1,083
# of POIs 873,814 318,162
# of mobility records 702,858 154,883
# of visiting relationships 88,351* 18,581*
% of visiting relationships with w (u,p) > 1 25.3%* 21.3%*
# of co-location peer relationships 87,156 6,782
# of co-visiting peer relationships 234,085* 43,309*

* the average number on ten user-POI graphs.

(2) NYC is produced based on a public Foursquare check-in dataset [33]. We treated each check-
in as a mobility record and collected POIs as well as the numbers of likes to POIs with Foursquare
developers APIs (Application Programming Interfaces).3 The numbers of likes were used to esti-
mate POI prior. The original check-in locations were very close to ground-truth POIs and a simple
distance-first strategy already achieved an accuracy of 0.364. Following [28], we injected noises
drawn from a Gaussian distribution with (μ = 0,σ = 2 × 10−4) to the check-in locations.

Mobility records are randomly split into 20%–10%–70% for training-validation-testing. Note that
in practice a majority of records do not have associated POIs. Table 1 lists the statistics of our data.

Evaluation metric. We adopted the Recall@k metric to evaluate the performance, which is the
fraction of test mobility records whose ground-truth visiting POIs are recalled by their respective
top-k annotated POIs over all test mobility records:

Recall@k =
# of test mobility records correctly annotated by their top-k predictive POIs

total # of test mobility records
. (9)

Under a fixed k , an approach with a higher Recall@k is more effective in the sense that the associ-
ated POIs of more mobility records are revealed. Note that all test mobility records are annotated
and, hence, Recall@k is sometimes referred to as Accuracy@k [30].

Baselines. We compared our JEPPI with five baselines and three simplified variants.

—Dist only utilizes spatial information and returns the top-k nearest POIs given a location.
—Bayes returns the top-k POIs ranked by the Bayesian Equation (5) given a mobility record.
—LTR trains a LambdaMART learning-to-rank model for ranking POIs near a location [19].

We used six of the nine developed features, excluding Creator, Mayor, and Friends-Here-Now

that are not available in our data.
—MRF constructs a Markov random field [28], which also captures user preference by enforc-

ing consistency in spatially- or temporally-close records. We used the supervised version
and only reported Recall@k with k = 1 since it assigns exactly one POI to each record.

—GE is a classic non-sequential POI recommendation approach [30] which learns graph-based
POI embeddings to preserve POI-POI, POI-word and POI-time relationships.

— JEP, JEPPI(col), JEPPI(cov) are variants of our complete JEPPI. The simplest JEP consid-
ers user preference only, i.e., λ1 = λ2 = 0. Based on JEP, JEPPI(col) and JEPPI(cov) further
incorporate co-location and co-visiting peer influence, respectively.

3https://developer.foursquare.com/.
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Table 2. Effectiveness Evaluation (Mean Recall@k ± Standard Deviation)

Dataset Method k = 1 k = 2 k = 3 k = 4

Dist 0.055 ± 2e-4 0.103 ± 3e-4 0.145 ± 4e-4 0.183 ± 4e-4
Bayes 0.159 ± 4e-4 0.233 ± 3e-4 0.282 ± 3e-4 0.321 ± 4e-4
LTR 0.211 ± 4e-2 0.276 ± 5e-2 0.306 ± 5e-2 0.326 ± 5e-2
MRF 0.195 ± 5e-4 / / /

Beijing GE 0.261 ± 6e-4 0.349 ± 7e-4 0.387 ± 7e-4 0.407 ± 7e-4
JEPPI 0.316 ± 6e-4∗ 0.420 ± 5e-4∗ 0.469 ± 7e-4∗ 0.495 ± 6e-4∗
JEP 0.242 ± 6e-4 0.325 ± 5e-4 0.375 ± 7e-4 0.409 ± 7e-4

JEPPI(col) 0.314 ± 6e-4 0.419 ± 5e-4 0.468 ± 6e-4 0.494 ± 6e-4
JEPPI(cov) 0.295 ± 7e-4 0.398 ± 8e-4 0.450 ± 9e-4 0.480 ± 8e-4

Dist 0.253 ± 8e-4 0.395 ± 7e-4 0.486 ± 8e-4 0.555 ± 9e-4
Bayes 0.437 ± 5e-4 0.581 ± 6e-4 0.666 ± 8e-4 0.714 ± 8e-4
LTR 0.370 ± 4e-2 0.502 ± 4e-2 0.581 ± 4e-2 0.638 ± 3e-2
MRF 0.409 ± 3e-3 / / /

NYC GE 0.435 ± 6e-3 0.574 ± 2e-3 0.644 ± 2e-3 0.683 ± 2e-3
JEPPI 0.547 ± 1e-3∗ 0.656 ± 1e-3∗ 0.705 ± 1e-3∗ 0.733 ± 9e-4∗
JEP 0.520 ± 2e-3 0.639 ± 2e-3 0.694 ± 1e-3 0.725 ± 8e-4

JEPPI(col) 0.546 ± 2e-3 0.655 ± 1e-3 0.704 ± 9e-4 0.732 ± 5e-4
JEPPI(cov) 0.539 ± 1e-3 0.649 ± 1e-3 0.699 ± 8e-4 0.727 ± 1e-3

∗ statistically significant (paired t-test p-level less than 0.01) compared with the best baseline.

Parameters and Implementation. All algorithms were implemented with C++, except for LTR

using the Java RankLib.4 We tuned Bayesian factor ϕ in {0.001, 0.003, 0.01, 0.03, 0.1}, trade-off pa-
rameter λ1, λ2 in {0.1, 0.3, 1, 3}, iteration threshold Ni in {104, 2 × 104, 105, 2 × 105}, learning rate α
in {0.01, 0.025, 0.05}, and the parameters of baselines on the validation set.

According to our tests, we set ϕ = (0.003, 0.03) on (Beijing, NYC) for Bayes. Note that the
location information on NYC was more accurate than Beijing. For LTR, we applied a Z-score
normalization on features and the shrinkage parameter was optimized to 0.6. For both MRF and
GE, it sufficed to utilize their recommended parameters. For our JEPPI, we chose λ1 = 3, λ2 = 0.3,
Ni = 2 × 105 on Beijing and λ1 = λ2 = 1, Ni = 2 × 104 on NYC by default, respectively. Besides, we
chose ϕ = 0.01, α = 0.025, Nc = 20, d = 96, B = 64, and K = 5 by default. Note that, if not specified
explicitly, all parameters of JEPPI were fixed to their default values in our tests. When quantity
measures were evaluated, the test was repeated over 10 times using different train-validation-test
splits and the average is reported.

5.2 Experimental Results

Exp-1: Effectiveness. In the first set of tests, we evaluate the overall effectiveness of JEPPI. We
aim to answer the following three questions: (Q1) how JEPPI performs for human mobility anno-
tation; (Q2) how the user preference and mobile peer influence factors impact on the effectiveness;
and (Q3) whether the equivalence-emphasizing metric improves the effectiveness.

Exp-1.1: Overall performance. We first compared the Recall@k of our JEPPI with baselines Dist,
Bayes, LTR, MRF, and GE. The results are reported in Table 2, and we find the following.

First, spatial information alone is insufficient for this task and Dist performs the worst. By fur-
ther combining POI prior, Bayes makes a noticeable improvement over Dist. Recall that we use

4https://sourceforge.net/p/lemur/wiki/RankLib/.
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Table 3. Effectiveness Study of the Equivalence-emphasizing Metric

(Mean Recall@k ± Standard Deviation)

Dataset w (u,u ′) in Equation (2) k = 1 k = 2 k = 3 k = 4
# of co-visiting POIs 0.271 ± 1e-3 0.361 ± 2e-3 0.410 ± 1e-3 0.443 ± 1e-3

Beijing # of co-visiting times 0.285 ± 8e-4 0.380 ± 8e-4 0.429 ± 9e-4 0.460 ± 9e-4
ours 0.295 ± 7e-4 0.398 ± 8e-4 0.450 ± 9e-4 0.480 ± 8e-4

# of co-visiting POIs 0.540 ± 1e-3 0.650 ± 2e-3 0.700 ± 7e-4 0.728 ± 1e-3
NYC # of co-visiting times 0.540 ± 2e-3 0.650 ± 1e-3 0.700 ± 8e-4 0.728 ± 8e-4

ours 0.539 ± 1e-3 0.649 ± 1e-3 0.699 ± 8e-4 0.727 ± 1e-3

the numbers of map queries and likes to model POI prior, and it turns out that both of them are
good choices. However, Bayes still remains too simple for the task.

Second, the more complex LTR, MRF, and GE approaches obtain fairly better results, especially
on Beijing. Despite their advanced strategies, they all suffer from some issues. For instance, LTR

simply uses the number of historical visits by a user to a POI to model preference, which suffers
greatly from data sparsity. Besides, the assumption of MRF, i.e., the associated POIs of spatially- or
temporally-close mobility records of the same users are consistent, is too strong. Finally, GE does
not explicitly model users. Instead, it combines all the visited POIs by a user to represent the user,
which might lose many unique characteristics.

Third, jointly exploiting user preference and mobile peer influence via mutual augmentation
learning is effective. Our full JEPPI consistently outperforms all tested baselines on both datasets
and the improvement is statistically significant. Indeed, on Beijing and NYC, the Recall@k of JEPPI

is on average (293%, 75%, 52%, 62%, 21%) and (65%, 12%, 29%, 34%, 14%) higher than (Dist, Bayes,
LTR, MRF, and GE) with all tested k , respectively. The improvement is more remarkable on Bei-
jing than NYC because the spatial information on NYC ensures all methods a good performance.
Another difference between the two datasets is that POI prior is very effective on NYC, as a result
of which Bayes alone is comparable to the more complex LTR, MRF, and GE.

Exp-1.2: Ablation study. To evaluate the impacts of user preference and mobile peer influence,
we further computed the Recall@k of JEP, JEPPI(col) and JEPPI(cov), reported in Table 2.

Comparing JEP with Bayes, we can see that the user preference factor can consistently improve
the effectiveness. Indeed, the Recall@k of JEP is on average (38%, 8.6%) higher than Bayes on
(Beijing, NYC). In addition, each of the two types of mobile peer influence can further enhance
annotation effectiveness. The Recall@k of (JEPPI(col), JEPPI(cov)) is on average (26%, 20%) and
(2.5%, 1.6%) higher than JEP on Beijing and NYC, respectively. Note that, given the adequate user
preference information on NYC, it is not easy for the mobile peer influence to obtain further im-
provement. Finally, combining the two types of mobile peer influence together, our full JEPPI is
slightly better than both JEPPI(col) and JEPPI(cov) on Beijing and NYC.

Exp-1.3: Study on the equivalence-emphasizing metric. To evaluate the impacts of our metric,
we computed the Recall@k of JEPPI(cov) with three choices of co-visiting weights w (u,u ′) in
Equation (2): (i) the number of co-visiting POIs, i.e., w (u,u ′) = |{p | w (u,p) ·w (u ′,p) > 0}|, (ii)
the number of co-visiting times i.e.,w (u,u ′) =

∑
p min{w (u,p),w (u ′,p)}, and (iii) our Equation (2)

which is the equivalence-emphasizing version of co-visiting times. The results are reported in
Table 3.

As can be seen, the different choices ofw (u,u ′) give almost the same results on NYC. This should
not be surprising since co-visiting mobile peer influence itself only has minor improvement on
NYC compared with JEP (Table 2). The Recall@k on Beijing is effectively influenced. As expected,
the number of co-visiting POIs is not a good choice, compared with the number of co-visiting
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Fig. 7. Parameter sensitivity.

times. Moreover, the equivalence-emphasizing strategy further boosts the effectiveness. Indeed,
(with, without) equivalence-emphasizing, the Recall@k of JEPPI(cov) is on average (10%, 20%)
higher than JEP on Beijing, i.e., the improvement is doubled by our metric.

Exp-2: Parameter sensitivity. In the second set of tests, we evaluate the parameter sensitivity
of JEPPI w.r.t. four parameters: trade-off parameters λ1 and λ2, Bayesian factor ϕ, and number d of
dimensions. Note that all parameters were fixed to their default values if not specified.

Exp-2.1: Impacts of λ1, i.e., co-location mobile peer influence. To evaluate the impacts of λ1, we
varied λ1 from 0 to 6, fixed λ2 = 0, and tested the Recall@k. The results are reported in Figure 7(a)
and (b). When varying λ1, the Recall@k of JEPPI first increases and then decreases with the in-
crement of λ1 on both datasets. Note that JEPPI does not converge on NYC with λ1 = 6. With less
adequate user preference information on Beijing, λ1 has larger impacts on Beijing than NYC. The
best improvement is achieved when 1 ≤ λ1 ≤ 3 on both datasets.

Exp-2.2: Impacts of λ2, i.e., co-visiting mobile peer influence. To evaluate the impacts of λ2, we
varied λ2 from 0 to 6, fixed λ1 = 0, and tested the Recall@k. The results are reported in Figure 7(c)
and (d). When varying λ2, the Recall@k of JEPPI also first increases and then decreases on both
datasets. Again, JEPPI has convergence issue on NYC with λ2 = 6 and is more sensitive to λ2 on
Beijing. The best improvement is also achieved when 1 ≤ λ2 ≤ 3. From the above, it should be
easy to choose a reasonable value for both λ1 and λ2.
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Fig. 8. Efficiency evaluation.

Fig. 9. Convergence study.

Exp-2.3: Impacts of Bayesian factor ϕ. To evaluate the impacts of ϕ, we varied ϕ from 0.001 to
0.1 and tested the Recall@k. The results are reported in Figure 7(e) and (f). When varying ϕ, the
Recall@k of JEPPI first increases and then decreases on both datasets for all tested k . In other
words, it suffices to choose a good ϕ from [0.001, 0.1]. Besides, a moderate ϕ = 0.01 can work well
for both inaccurate and accurate positioning, i.e., on Beijing and NYC.

Exp-2.4 Impacts of the numberd of dimensions. To evaluate the impacts of d , we varied d from 32
to 192 and tested the Recall@k. The results are reported in Figures 7(g) & 7(h). When varying d ,
the Recall@k keeps stable. Our approach is very robust to d .

Exp-3: Efficiency. In the third set of tests, we evaluate the efficiency of JEPPI shown in Figure 8.
Overall, Dist and Bayes are the most efficient due to their simple strategies (Figure 8(a)). Algo-
rithm LTR also runs faster than JEPPI. Note that LTR is a learning-to-rank approach with six
features. On the other hand, JEPPI is comparable with GE in efficiency and consistently faster
than MRF. For the variants of JEPPI, the running time increases if more factors are exploited
(Figure 8(b)). The complete JEPPI can finish the tests in (527, 60) seconds on (Beijing, NYC). Fi-
nally, the running time of JEPPI increases linearly with the number d of dimensions (Figure 8(c)).
To conclude, the extra running time of JEPPI is affordable for achieving better effectiveness.

Exp-4: Convergence. Our JEPPI iteratively optimizes the objective with various factors. In the
fourth set of tests, we empirically evaluate the convergence of JEPPI by testing the Recall@k with
different number Ni of iterations. The results are reported in Figure 9, where the Recall@k first
increases at the beginning and then becomes stable on both datasets. We find that, with proper
trade-off parameters, JEPPI can converge after (100K, 10K) iterations on (Beijing, NYC).

Exp-5. Case study. We finally present a case study in Figure 10 to illustrate how the idea of
jointly exploiting user preference and mobile peer influence works in a real-life example. Recall
that user u0 generates four mobility records x1–x4 and we are to annotate these records with the
POIs p0–p3. We compare the top-five POIs identified by JEP and JEPPI.
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Fig. 10. Case study.

Learning user preference, JEP ranks POI p1 of x2 in the second place based on visiting relation-
ship (u0,p1). By further incorporating the mobile peer influence, JEPPI significantly refines the
results. (i) For x2, it further ranks POI p1 at the top-1 place by learning the mobile peer influence
between u0 and u1/u2 as well as u1/u2’s preference for p1. (ii) For x3 and x4, it successfully ranks
their ground-truth visiting POIs at top places, also by learning the preference of u3–u5 for p2 and
p3. (iii) Finally, for x1, it still finds out the true visiting POI p0 even though there are no direct clues.
This is because JEPPI can indirectly learn the preference of “similar” people of u0 through mobile
peer relationships.

6 CONCLUDING REMARKS

In this article, we proposed a new framework, named JEPPI, to jointly exploit user preference
and mobile peer influence for human mobility annotation. The two distinct factors were unified
in a behavior-driven user-POI graph via users’ visiting, co-location, and co-visiting behaviors,
respectively. An equivalence-emphasizing metric was proposed for evaluating the second-order
co-visiting peer influence. We learned latent user and POI representations with mutual augmenta-
tion learning to preserve user preference and mobile peer influence. Moreover, a Bayesian method
was used to further fuse spatial influence and POI prior. Finally, extensive experiments were con-
ducted on two real-world datasets to demonstrate the superiority of our approach as well as the
advantages of jointly exploiting user preference and mobile peer influence.

A couple of issues are worth further investigation. First, we are to explore peer influence from
social media, like [35], for human mobility annotation and use it to enrich our behavior-driven
mobile peer influence if possible. Second, we are to evaluate the utility of the annotated human
mobility in real-world applications.
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