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ABSTRACT
Tags of a Point of Interest (POI) can facilitate location-based ser-
vices from many aspects like location search and place recommen-
dation. However, many POI tags are often incomplete or imprecise,
which may lead to performance degradation of tag-dependent ap-
plications. In this paper, we study the POI tag refinement problem
which aims to automatically fill in the missing tags as well as cor-
rect noisy tags for POIs. We propose a tri-adaptive collaborative
learning framework to search for an optimal POI-tag score matrix.
The framework integrates three components to collaboratively (i)
model the similarity matching between POI and tag, (ii) recover
the POI-tag pattern via matrix factorization and (iii) learn to in-
fer the most possible tags by maximum likelihood estimation. We
devise an adaptively joint training process to optimize the model
and regularize each component simultaneously. And the final re-
finement results are the consensus of multiple views from different
components. We also discuss how to utilize various data sources to
construct features for tag refinement, including user profile data,
query data on Baidu Maps and basic properties of POIs. Finally, we
conduct extensive experiments to demonstrate the effectiveness of
our framework. And we further present a case study of the deploy-
ment of our framework on Baidu Maps.
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1 INTRODUCTION
Annotating semantic tags to a Point of Interest (POI) is an intrigu-
ing problem, which benefits a lot of location-based services [5, 23–
25, 28, 31, 32, 36]. For example, in the online map services (like
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Google Maps and Baidu Maps), users are greatly facilitated by in-
formative tags when searching and exploring new places. Tags also
play an important role for POI recommendation since the tags can
help to identify the service ability of POIs.

In real-life applications, such as onlinemap services and location-
based social networks, tags of many POIs are incomplete or im-
precise, especially for those unpopular or newly-established POIs.
Previous studies report that approximately 30% of places in Whrrl
and Foursquare datasets lack any meaningful textual descriptions
[34]. The phenomenon is mainly caused by two reasons: 1) for tag
incompleteness, POI tags are mined from comments or annotated
by users, however, most POIs do not have adequate users to gen-
erate tags; and 2) for tag imprecision, since tags are either mined
from text by machine learning models or annotated by users, it is
inevitable to bring errors to the tags. In addition, user-generated
tags (from comments or by manual annotation) are often biased
towards personal perspectives and context cues [11, 21, 26]. It is
impractical for common users to annotate the tags of POI compre-
hensively. In a word, imprecision and incompleteness of tags of
POIs probably lead to performance degradation of tag-dependent
applications for POIs.

A possible way to make up the missing tags of POIs is to utilize
the tag annotation techniques [12, 13, 15, 16, 29, 34] which have
gainedmuch attention from researchers in recent years.These tech-
niques generally assume there is a perfect training dataset, and
then cast the tag annotation as a classification problem. However,
any missing or noisy tag could potentially lead to a biased estima-
tion of the tag annotation model, resulting in suboptimal perfor-
mances [30]. It is impractical to maintain a large amount of well
annotated POIs, especially considering the concept drift phenome-
non and the frequent generation of new POIs and tags.

The limitation of existing POI annotation methods motivates
us to develop a new framework for tag refinement. We have two
observations regarding this problem. First, the initially annotated
tags of POIs, despite imperfect, still reveal the primarily relevant
tag semantics of the POIs. We can present the relationships be-
tween POI and tag as a scorematrixwhere each entry is a score that
represents the relevance of a tag to a POI. The partially observed
tags of POIs can also be represented as a binary matrix whose el-
ement (i, j) is 1 if and only if POI i is annotated with tag tj . Our
insight is that the optimal score matrix should not deviate from the
binary matrix too much. Therefore we can adopt a machine learn-
ing approach to searching for an optimal POI-tag score matrix.
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Our second observation is that the crowd search behaviors on
online map services in a short time session also provide cues for
POI tag refinement. For example, when a user decides to have din-
ner, she/he may search several different restaurants on the maps
in a short time interval. All the POIs searched by the user probably
have high tag correlation. Even if some tags are missed or anno-
tated incorrectly, such crowd user behaviors may imply the true
tags of the POI. We can leverage such phenomenon to complete or
correct tags of the POI.

In this paper, we propose a collaborative learning framework,
named Tri-Adaptive Collaborative Learning framework (TACL for
short), to tackle the tag refinement problem. TACL consists of three
components including non-negative matrix factorization (NMF),
pair-wise similarity matching and maximum likelihood estimation
(MLE).The NMF component of TACL aims to search for an optimal
POI-tag score matrix which is consistent with the observed POI-
tag matrix. Then in the pair-wise similarity matching component,
we devise a siamese structure neural network to model the consis-
tency between feature similarity and POI-tag semantic similarity.
Finally, we also adopt an MLE component to train a multi-label
classification model to infer the possible tags of POIs. Moreover,
TACL is a collaborative learning framework which trains the three
components simultaneously on the same data with a unified opti-
mization process. The advantage of collaborative learning is that
the consensus of multiple views on the POI-tag matrix from dif-
ferent components provides supplementary information and reg-
ularization to each other, alleviating biased estimation caused by
incomplete or noisy tags.

Besides, we propose a feature engineeringmethod based onmap
query data on BaiduMaps. Especially, we build a POI session graph
based on user search behaviors.Thenwe extract the tag refinement
related features from the POI session graph. Other features from
user profile and POI basic properities (like name, address and alias)
are also included for tag refinement.

Our framework is a collaborative learning framework from two
perspectives: 1) our framework includes an adaptive model which
is collaboratively optimized for tag refinement; 2) the tag refine-
ment is partially based on the features extracted from map query
data which reflects the collaborative behavior of human beings on
Baidu Maps. We summarize our contribution as follows:

• We propose a tri-adaptive collaborative learning framework
to solve the POI tag refinement problem. As far as we know,
we are the first to study this problem. The feature engineer-
ing method on Baidu Maps query data and user profile data
is also discussed

• Extensive experiments validate the effectiveness of our frame-
work which outperforms several competitors. We also re-
port a case study of the deployment of our framework on
Baidu Maps.

The rest of the paper is organized as follows. Next, we discuss re-
lated work in Section 2, followed by the preliminaries in Section 3.
Then we present the details of the feature construction and TACL
in Section 4 and Section 5, respectively. Finally we discuss exper-
iments in Section 6 and present an online deployment case study
in Section 7. We conclude the paper in Section 8.

2 RELATEDWORK
Our work is closely related with tag annotation which is to auto-
matically associate unlabelled or rarely labelled POIs with seman-
tically related tags. The existing studies on POI tag annotation can
be divided into two categories: feature-based methods and model-
based methods. For the feature-based methods, much effort has
been devoted to studying how to extract discriminative features
for predicting the tags of places. In [15, 16], Krumm et al. propose a
set of manually designed features extracted from publicly available
location diaries and individuals’ visits. There are also approaches
[12, 13] to exploiting the features of user check-in activities and
other user behavior data to train a generative probabilistic model
to infer tags for POIs.

For model-based methods, different approaches to POI annota-
tion are investigated. The tag annotation for POIs is first studied
in [34] which introduces a collective classification approach to fea-
ture extraction. The authors merge hundreds of tags into 21 cat-
egories to simplify the task. In [38], authors study how to select
the most relevant features for POI tag classification. Yang et al.
[33] propose an updatable sketching technique to learn compact
sketches from user activity streams, and then they use a KNN clas-
sifier for inferring the labels of POIs. Wang et al. [29] propose a
graph embedding method to learn POI embeddings from a POI-
temporal bipartite graph, and then use the POI embedding vectors
as input for a multi-class SVM classifier.

Whereas, in this paper, we study the tag refinement problem.
Instead of assuming there is a perfect training dataset with unla-
belled test set, POI tag refinement assumes the dataset is made up
of partially annotated and even incorrectly annotated POIs. It is
supposed to fill in missing tags and correct noisy tags for each POI.
To the best of our knowledge, we are the first to study the tag re-
finement problem for POIs.

The research topic of this paper is also related to the image
tag completion and refinement problem. Though many algorithms
have been proposed for automatic image annotation [1, 6, 10], im-
age tag refinement is treated as an independent problem,which has
become an attractive subject of many researches [8, 19–22, 30, 35,
37]. However, the key idea of image tag completion is to utilize the
complex image visual features to infer the semantic labels, which
is quite different from the POI tag refinement scenarios. Hence,
these image tag completion/refinementmethods cannot be directly
applied in our POI tag refinement problem.

3 PRELIMINARIES
We present preliminaries in this section. We use capital letters (e.g.
P and T) to denote matrices, and use lower case letter with arrow
(e.g. ®pi and ®tj ) to denote vectors. In particular, we use pi to denote
a POI, and use ®pi ∈ Rkp to denote feature vector of the POI pi .
Similarly, we use tj to denote a tag, and use ®tj ∈ Rkt to denote the
feature vector of the tag tj . P = [®p1, ®p2, ..., ®pn ]T is a POI feature
matrix where n is the number of POIs. All unique tags annotated
on the POIs are gathered in tag feature matrixT = [®t1, ®t2, ..., ®tm ]T ,
wherem is the number of unique tags.

The observed tag annotation of all POIs can be presented in a
binary observed POI-tag matrix Ŷ ∈ Rn×m with ŷi , j = 1when POI
pi is annotated with tag tj , and 0 otherwise. Usually the observed



Figure 1: An overview of the POI tag refinement process

POI-tag matrix Ŷ is incomplete and imprecise. Our objective is to
predict a POI-tag score matrix Y whose element yi , j indicates the
confidence score of POI pi having a tag tj . Hereafter, we use ®̂yi ,∗
to denote the observed POI-tag vector of POI pi , and use ®̂y∗, j to
denote the observed POI-tag vector of tag tj . It is the same for the
cases of ®yi ,∗ and ®y∗, j . We formally define the POI tag refinement
problem as follows:

Definition 3.1 (POI tag refinement). Given POI feature matrix
P = [®p1, ®p2, ..., ®pn ]T , tag feature matrix T = [®t1, ®t2, ..., ®tm ]T , and
an observed POI-tag matrix Ŷ ∈ Rn×m , the POI tag refinement is to
search an optimal POI-tag score matrix Y ∈ Rn×m where yi j is the
confidence score of assigning tag tj to POI pi .

Figure 1 illustrates an overview of the POI tag refinement pro-
cess. We first extract features of POIs and tags from map query
data and user profile data. Then we conduct tag refinement by the
TACL framework based on the extracted features. In the following
two sections, we first introduce the feature extraction from Baidu’s
data, and then we present our TACL framework.

4 FEATURES FOR POI TAG REFINEMENT
In this section, we describe how to construct the features of POIs
and tags. As shown in Figure 1, we construct features based on POI
basic properties (like name and address), user profile data and map
query data on Baidu Maps.

For basic properties of POI pi , we cut the POI string informa-
tion (which includes name, address and alias names) into words,
and look up the word embedding trained on the Chinese corpus
from Baidu Baike.Thenwe average all the vectors to form the basic
property feature vector ®pwi . In the rest of this section, we introduce
how to extract features from user profile data and map query data.

4.1 Data sources
In this paper we use two data sources for tag refinement: map
query data and user profile data. Map query data records users’
search behaviors from Baidu Maps. We can simply formulate the
map query data as a sequence of tuples MD = {(uj ,pi , tsa )} each
of which indicates that a user uj has an interaction (search, click
or view) with the POI pi at timestamp tsa .

The user profile data is obtained from a user profile platform
that provides features for all Baidu’s users, including age, gender,
consumption level, job and education level. In Appendix A.3 and
Table 5, we list the user profile features used to construct the POI
profile. We denote the profile features of user uj as ®uj .

4.2 POI profile features
POI profile features are based on profile features of users who have
searched the POI. This is inspired from a widely recognized as-
sumption that the tags of a POI are closely related with its users.
Different from existing POI tag annotation methods like [29, 34],
we do not define “users” of a POI as people who have check-in to
the POI, but people who have searched the POI on Baidu Maps. An
advantage of this strategy is that the number of search actions is
much larger than the one of check-ins.

The POI profile feature vector is the histogram statistics of user
distribution. Given a POI pi and a time interval [tss , tse ], we can
retrieve a set of users U pi

[tss ,tse ] from map query data MD that
U
pi
[tss ,tse ] = {uj |(uj ,pi , tsa ) ∈ MD ∧ tss ≤ tsa ≤ tse }. Then the

POI profile features of pi is the aggregation of the user feature of
U
pi
[tss ,tse ] which can be expressed as:

®piu =
1

|U pi
[tss ,tse ] |

∑
®uj ; where uj ∈ U

pi
[tss ,tse ] (1)

where ®pui denotes the POI profile feature vector.

(a) Qiaohu Happy Island (b) Element Bar

Figure 2: Examples of POI profile features

The POI profile features can reflect characteristics of people in-
terested in the POI. As we can see from Figure 2, for Qiaohu Happy
Island (which is a kids garden), the ratio of married and unmarried
users is 6.7 : 1, whereas the same ratio of Element Bar (which is
a wine bar) is 0.32 : 1. Intuitively, such POI profile can play an
important role in distinguishing POIs with different tags.

4.3 Features from POI session graph
We next introduce how to build a POI session graph from the map
query data, and then extract features from the POI session graph.
A POI session graph, denoted byGp = {V p , Ep }, is a directed graph
with V p being a set of POIs and Ep being a set of edges between
the POIs, which encodes the user behavior correlation among POIs
reflected in the map query data. In general, if there are many users
interacting with pi ∈ V p and pj ∈ V p in a short time session, there
exists an edge epi j =< pi ,pj ,wi j >∈ Ep between pi and pj with a
weight wi j ∈ R. Here a time session is a short time interval that a
user takes interactions (search, click or view) with POIs within a
given time frame.

In this study we consider an edge weight as the number of users
who interact with the two corresponding POIs in a session. Given



a pair of POIs pi and pj , a time interval δh , we determine whether
there is a link between pi and pj with the link boolean function:

σh (pi ,pj |δh,uk ) =


1 ((uk ,pi , tsa ) ∈ MD)∧
((uk ,pj , tsb ) ∈ MD) ∧ (0 < tsb − tsa ≤ δh )

0 otherwise

Note that the link has direction between pi and pj with the condi-
tion tsa < tsb . In our experiments, we set δh = 0.5h which bal-
ances the number of links and the semantic meaning of users in a
short time session on Baidu Maps. Given a time interval [tss , tse ],
we can calculate the number of links between pi and pj by the fol-
lowing function:

κd (pi ,pj |tss , tse ) =
∑

<u′,pi ,t ′>∈MD
<u′,pj ,t ′′>∈MD
tss ≤t ′,t ′′≤tse

σh (pi ,pj |δh,u ′) (2)

Then the edge weight of epi j =< pi ,pj ,wi j >∈ Ep within the time
interval [tss , tse ] is simplywi j = κd (pi ,pj |tss , tse ).

(a) Starbucks (b) Windsor KTV

Figure 3: Examples of nodes and edges in POI session graph

(a) Starbucks (b) Windsor KTV

Figure 4: Examples of features from POI session graph

Finally we present how to extract tag-related features from the
POI session graph. The key idea is that, for each POI pi , we calcu-
late the tag distribution of its neighbors in the POI session graph.
Let OutNer (pi ) = {pj | < pi ,pj ,wi j >∈ Ep } denote the set of POIs
pointed from pi , and InNer (pi ) = {pj | < pj ,pi ,w ji >∈ Ep } de-
note the set of POIs pointing to pi . We define the out-degree tag
distribution features of pi based on the POI session graph as:

®poti =
1∑

pj ∈OutNer (pi )wi j

∑
pj ∈OutNer (pi )

wi j ŷj ,∗ (3)

Figure 5: The tri-adaptive collaborative framework for POI
tag refinement

Similarly, we can also get the in-degree tag distribution feature on
POI session graph of pi as:

®piti =
1∑

pj ∈InN er (pi )w ji

∑
pj ∈InN er (pi )

w ji ŷj ,∗

We show an example of two nodes with their OutNer (·) neigh-
bors in the POI session graph in Figure 3. Aswe can see from Figure
3, the POI “Starbucks” has very different neighbors from “Wind-
sor KTV”. We also illustrate the top-10 features of “Starbucks” and
“Windsor KTV” based on their neighbors of OutNer (·) according
to Equation 3 in Figure 4.

4.4 Features of POIs and Tags
Here we summarize the features of POIs so far. We have already
construct POI features byword embedding ®pwi , POI profile features
®pui , POI session graph features ®poti and ®piti . Therefore, the feature
of pi is ®pi = [®pwi , ®p

u
i , ®p

ot
i , ®p

it
i ].

The tag features is aggregated from the POI features. For a tag
tj , whether a POI has the tag tj can be indicated in a vector ŷ∗, j =
Ŷ[:, j] (which means ®̂y∗, j [i] = 1 if pi has tag tj , and ®̂y∗, j [i] = 0
otherwise), then the features of tj can be calculated as:

®tj =
1

|ŷ∗, j |
∑
i
ŷ∗, j [i]®pi (4)

5 TAG REFINEMENT FRAMEWORK
In this section we first present a framework overview, and then
introduce the details of TACL. Finally, we briefly discuss the opti-
mization technique and prediction method based on TACL.

5.1 Framework overview
Figure 5 illustrates three components of TACL for POI tag refine-
ment: non-negative matrix factorization (NMF), pari-wise similar-
ity matching and maximum likelihood estimation (MLE) for multi-
label classification. These three components are adaptively trained
to optimize the framework. The central component of TACL is the
NMF part which can reconstract a POI-tag score matrix by mini-
mizing deviation from the initial observed binary POI-tag matrix.
Our insight is that the binary observed POI-tag matrix Ŷ, despite
imperfections, still reveals the primary semantics and functions of



each POI. Therefore we use NMF to recover the POI-tag score ma-
trix Y to simultaneously fill missing tags and de-emphasize noisy
tags with a limited number of observations in matrix Ŷ.

The upper component is the pair-wise matching part which de-
fines the matching similarity between POIs and tags. The bottom
component is theMLE part using a multi-label classification model
to predict the tags of POIs. Both the upper and bottom compo-
nents reflect the semantic connection between the POI features
and tag features, i.e. we try to identify the candidate tags for each
POI based on the information indicating in the POI features and tag
features. Note that the pair-wise matching has three regularization
terms: the deviation between the similarity matching matrix and
NMF recovered POI-tag score matrix Ȳ, the similarity consistency
between f (·) and NMF matrix QR, and the similarity consistency
between д(·) and NMF matrix QR. The bottom component also
has a regularization of the deviation between the predicted matrix
and NMF recovered POI-tag score matrix Ȳ. These regularizations
are added to guarantee that the objective of each component is to
search the optimal POI-tag score matrix.

TACL can be considered as a multi-view collaborative learning
method [27]. The optimal POI-tag score matrix is learned from low
rankmatrix factorization, pair-wise similaritymatching, andmulti-
label maximum likelihood estimation. All the models are trained
simultaneously on the same data, while exploiting commonalities
and differences across views in the data with regularization to each
other. Then the consensus of the POI-tag score matrix from mul-
tiple views of three components provides supplementary informa-
tion to alleviate biased estimation of the model caused by incom-
plete or noisy tags. Since the three components are adaptively train-
ing in a unified process, we name our framework as “tri-adaptive”
collaborative learning framework.

5.2 TACL framework
In this section, we present the detail of our framework. The first
component of TACL is low rank matrix factorization. We can as-
sume that the annotated tags of each POI are drawn independently
from a multinomial distribution. Our goal is to recover the multi-
nomial distribution from a limited number of observed tags in Ŷ .
It is not easy for this task since the number of parameters to be es-
timated is significantly larger than the number of annotated tags.
Like most topic model approaches, an effective technique to tackle
this problem is to assume the tags are sampled from a mixture of a
small number of multinomial distributions in latent space, which
implies that POI-tag score matrix is low rank [4, 8]. In this paper,
we adopt NMF to conduct the low rank matrix reconstruction. The
advantage of NMF is that the resulting low-rank factors of NMF
lead to physically natural interpretations[18].

Given the matrix Ŷ, the goal of NMF is to find two matrices
Q ∈ Rn×k and R ∈ Rk×m having only nonnegative entries such
that Ŷ ≈ QR. Hereafter, we also denote the recovered POI-tag
matrix by NMF as Ȳ = QR. The matricesQ andR can be found by
solving an optimization problem defined with the Frobenius norm,
Kullback-Leibler (KL) divergence or other divergences. Here we
use the Frobenius norm as the optimization loss function [17]:

Lmf = ‖Ŷ −QR‖2F with Q ≥ 0,R ≥ 0 (5)

For the pair-wise similarity matching component (upper com-
ponent in Figure 5), we transform the POI and tag features into
another feature spaces, and then use the dot product to measure
the matching probability between POIs and tags, which are:

S = f (P)д(T)T (6)

f (P) = [f (®p1), ..., f (®pn )]T (7)

д(T) = [д(®t1), ...,д(®tm )]T (8)

where the combination of f (·) and д(·) is a siamese network with
two subnetworks processing the POI and tag in parallel [3]. Here
we use Multilayer Perceptron (MLP) to model f (·) and д(·).

The insight of the pair-wise similarity matchingmethod is to op-
timize f (·) and д(·) that f (®pi )д(®tj ) has a high value if tag tj belongs
to pi . Different from the traditional siamese network, we have two
objectives to optimize f (®pi )д(®tj ). The first objective is to minimize
the loss between the pairwise similarity and the observed POI-tag
matrix Ŷ. In this case we use the binary cross entropy (BCE) to
define the loss function:

Lps1 = −
∑

1≤i≤n
1≤j≤m

(
ŷi j log(f (pi )д(tj ))+ (1−ŷi j ) log(1− f (pi )д(tj ))

)
The second objective is to regularize the difference between the
pairwise similarity matrix and low-rank recovered matrix Ȳ =

QR, and the loss function is:

Lps2 = ‖ f (P)д(T) −QR‖ (9)

The reasons to minimize the error between Ȳ and f (P)д(T) are: 1)
since Ȳ is partially observed and possibly noisy, solely optimizing
Lps1 cannot achieve the purpose for tag refinement; and 2) we can
learn to optimize the pair-wise function and matrix factorization
collaboratively in a multi-view training process.

Note that f (·) also indicates that the similarity between pi and
pj . The POI similarity in tag space can be calculated by Spp =

ȲȲT = QR(QR)T ∈ Rn×n . In order to ensure the consistency
between the POI similarity in tag space and the MLP network f (·),
we add the following regularization term in the loss function:

Lpp = ‖ f (P)f (P)T −QR(QR)T ‖2 (10)

By adding the regularization term, we also build the connection
betweenQR and f (·). Wewill utilize f (·) to make prediction based
on QR which will be introduced in Section 5.3.

Similarly, the tag similarity in POI space can be calculated by
Stt = ȲT Ȳ = (QR)TQR ∈ Rm×m , and we can also add the reg-
ularization term for the MLP network д(·), which ensures the con-
sistency between the tag similarity in POI space and the learned
representation of tags:

Lt t = ‖д(T)д(T)T − (QR)TQR‖2 (11)

To sum up, the loss function to be optimized for pair-wised sim-
ilarity matching is:

Lps = λps1Lps1 + λps2Lps2 + λppLpp + λt tLt t (12)

The bottom component of TACL is maximum likelihood esti-
mation (MLE) part which essentially is a multi-label classification
model to enhance the tag refinement quality. Here we use an MLP



model to predict the tags of a POI, and suppose the prediction func-
tion is c(P). We also adopt to optimize c(·) according to two objec-
tives, as the same with pair-wise similarity matching model. The
first objective is to minimize the loss between c(·) and Ŷ, and we
also use the BCE loss:

Lc1 = −
∑

1≤i≤n

(
ŷi ,∗ log(c(pi )) + (1 − ŷi ,∗) log(1 − c(pi ))

)
(13)

The second objective is to minimize the difference between the c(·)
and Ȳ = QR, and the loss function is:

Lc2 = ‖c(P) − Ȳ‖2 (14)

Then the loss function of c(·) to be optimized is:

L = λc1Lc1 + λc2Lc2 (15)

Finally, we can summarize the above three components together
of TACL into the following optimization problem:

minL = λmf Lmf + λpsLps + λcLc + λθ ‖Θ‖2 (16)

where ‖Θ‖2 denotes L2 regularization on all trainable parameters.

5.3 Optimization and prediction
The formulation in Equation 16 is a quadratic optimization prob-
lem since Lmf has nonnegative constraints. Except forQR, other
parameters can be optimized by gradient descent. In our model,
we adopt the alternating optimization strategy to optimize the pa-
rameters. In particular, for each epoch, we optimize the variable
of QR first with others fixed by standard quadratic programming.
The NMF is optimized by a coordinate-wise algorithm[9], where
each unknown variable can be solved sequentially and explicitly as
simple quadratic optimization problems. Then we optimize other
variables with fixing QR. For the gradient descent optimization,
we use the adaptive momentum (ADAM) optimizer [14]. We re-
peat this procedure until meeting a predefined stop condition.

The final refinement result is an ensemble [7] of the three com-
ponents. Given a candidate POI p0, our objective is to generate a
tag confidence vector y0,∗ where each entry y0, j denotes a score
that the p0 has tag tj . The result of the pairwise component can be
obtained by yps0,∗ = f (®p0)д(T )T , and the one of the MLE model is
yc0,∗ = c(®p0). For the NMF model, we use a collaborative filtering-
like method to do such prediction. Given p0, we first retrieve top
kmf POIs from the training dataset (which have the low rank ma-
trix fatorization Ŷ = QR) according to the similarity defined by
function f (·), and denote their index in Ŷ as Ikmf = {i1, i2, ..., ikmf }.
The tag confidence vector byNMFmodel as:ymf

0,∗ =
1

kmf

∑
i ∈Ikmf

Ȳi ,∗.
The final prediction result is the ensemble of three components:

y0,∗ = (1 − α − β)ymf
0,∗ + αy

ps
0,∗ + βy

c
0,∗ (17)

6 EXPERIMENTS
6.1 Datasets and settings
We evaluate the performance of our framework on both Bejing and
Chengdu datasets. All themap query dataMD and user profile data
are collected from Baidu Maps from August 1 2018 to Octorber 31
2018. For Beijing dataset, we use POIs located in six main urban

areas of Beijing – Dongcheng, Xicheng, Haidian, Chaoyang, Shi-
jingshan and Fengtai. For Chengdu dataset, we use POIs located
in five main urban areas of Chengdu – Qingyang, Jinniu, Wuhou,
Chenghua and Jinjiang.TheBeijing dataset contains 306K POIs and
Chengdu data contains 234K POIs. We summarize the statistics of
the data in Table 1.

Table 1: Statistics of map query data and POIs

Dataset # of map queries # of POIs Avg. # of tag
Beijing 50.6M 306K 2.43
Chengdu 21.0M 234K 2.15

We randomly separate the dataset into three folds. One fold con-
sisting of 80% of POIs is used as training data, one fold consisting of
10% of POIs is used as validation data and another fold consisting
of 10% of POIs is used as testing data. All experiments are con-
ducted on a GPU-CPU platform with GTX 1080.The program and
baselines are implemented in Python 2.7.

We usemetrics Average Precision@N (AP@N), Average Recall@N
(AR@N), Coverage@N (C@N),MeanAverage Precision (MAP@N)
and Total Mean Average Precision (MAP@Total1) to evaluate our
framework. Introduction about the metrics is in Appendix A.1. We
compare TACL with the following state-of-the-art methods:

• TransE [2] is a method for the prediction of missing rela-
tionships in knowledge graphs. We add a “has” relation be-
tween POI and tag if a POI has a tag, then use TransE to
predict the possible tags of POIs.

• PPE (Predictive Place Embedding) [29] is a state-of-the-art
POI tag annotation method though graph embedding.

• TMC (Tag Completion Algorithm) [30] is a tag completion
method for images by searching an optimal tag matrix.

• NMF (Non-negative Matrix Factorization) has been widely
used inmany fields formatrix recovery. Herewe useNMF to
recover the POI-tag score matrix based on observed binary
POI-tag matrix.

• MLP (Multilayer Perceptron) is a feedforward neural net-
work that can do multi-label classification. Here we BCE
loss to train the MLP, and use the features of POI as the
input of MLP.

We conduct performance evaluation of the tag refinement on
Beijing dataset and Chengdu dataset with three settings: 1) evalu-
ating on original POI data (Section 6.2); 2) evaluating on POI data
with randomly adding noisy tags to 50% of POIs (Section 6.3); and
3) evaluating on POI data with randomly removing a half of tags
of 50% POIs (Section 6.4).

6.2 Performance evaluation on original data
Table 2 shows the evaluation results on original data with differ-
ent metrics. As shown in Table 2, TACL outperforms all baselines.
First, TACL’s performance on AP, AR, C and MAP can substan-
tially outperform baselines with the same N . Second, with increas-
ing N, all models’ performance becomes worse with regard to AP
1Since Precision, Recall and Coverage of total result is always 1 for all models, we
only report MAP@Total here.



Table 2: Performance(%) comparison between TACL and baselines

Dataset Beijing Chengdu
Model TransE PPE TMC NMF MLP TACL TransE PPE TMC NMF MLP TACL

AP@N
1 11.32 23.49 62.50 80.67 83.25 87.83 12.54 31.30 63.06 80.81 84.19 88.42
3 8.42 27.33 40.87 49.25 60.06 64.03 8.41 22.97 36.82 45.42 55.50 58.67
5 7.29 26.73 29.13 33.19 40.60 42.82 7.12 17.91 25.97 30.27 37.16 38.79

AR@N
1 11.05 4.36 28.34 37.72 38.76 41.10 12.37 19.33 37.09 46.08 47.73 49.98
3 21.25 16.42 52.52 63.18 76.94 81.60 21.53 33.33 57.42 67.70 81.08 84.92
5 29.26 25.56 61.62 70.16 84.96 89.10 29.52 42.12 65.08 73.83 88.06 91.16

C@N
1 11.32 23.49 62.50 80.67 83.25 87.83 12.54 31.30 63.06 80.81 84.19 88.42
3 25.23 19.71 77.63 87.68 91.45 93.35 25.20 55.43 81.89 87.58 93.20 94.68
5 34.56 52.57 83.85 91.25 94.42 95.93 33.96 65.85 86.43 90.66 95.74 96.75

MAP@N

1 11.32 23.49 62.50 80.67 83.25 87.83 12.54 31.30 63.06 80.81 84.19 88.42
3 16.67 31.21 68.18 82.89 86.14 89.40 17.50 44.24 70.62 83.18 87.58 90.56
5 18.96 38.29 67.52 81.61 85.20 88.62 19.63 46.80 70.36 82.09 86.85 89.91

Total 20.77 31.21 54.65 67.58 80.84 85.72 22.05 35.39 57.24 70.98 83.39 87.41

Figure 6: TACL and MLP’ s results at different ratio of POIs with noisy tags

and becomes better with regard to AR. It is because the larger N
results in the larger denominator when computing the precision
of each POI. Meanwhile, the size of intersection of recovered tags
and ground truth tags also becomes larger, leading to the numer-
ator being larger when computing recall. Last but not least, TACL
and baselines show the same ranks on different metrics on Beijing
and Chengdu datasets, and our TACL beats all the baselines consis-
tently. We also find that all models achieve the best performance
onMAPwhenN = 3. Tomake the experiment bemore convincing,
we add additional experiments of MAP@Total to show the results
in extreme situation in the last row of Table 2.

6.3 Performance evaluation with randomly
adding noisy tags

In this section, we evaluate TACL on POI datawith randomly adding
noisy tags. We randomly select α percent of POIs as target POIs,
and then add noisy tags to the target POIs. The number of added
noisy tags for a POI equals the number of tags of this POI.

We present the experiment result among all baselines with α =
50% in Table 3. As we can see from Table 3, TACL outperforms all
baselines.This demonstrates TACL’s better robustness with regard

to noisy tags. From Table 3, we can see that MLP is the second
strongest competitor. We further compare TACL with MLP with
different percent of POIs with noisy tags shown in Figure 6. It is
worth noting that, with more POIs with noisy tags, for AP, AR and
MAP, MLP’s curves drop faster than TACL. Theses results on both
Beijing and Chengdu datasets prove that TACL is more robust than
MLP with regard to noisy tags.

6.4 Performance evaluation with randomly
removing tags

We then examine the effectiveness of our model on Beijing and
Chengdu datasets after randomly removing a half of tags of α per-
cent of POIs. Table 4 shows the results under different metrics
when N = 3 and α = 50%. We observe that the performance of all
models becomes worse than the ones with complete tags. However,
the proposed TACL is significantly better than all competitors. We
remove a half tags of different proportions of POIs to evaluate the
effect of data incompletion in Figure 7. We also compare TACL
with MLP (which is the second strongest baseline). Figure 7 shows
that the performance of both TACL and MLP declines with more



Table 3: Performance(%) evaluation with adding noisy tags to 50% of POIs

Dataset Beijing Chengdu
Model TransE PPE TMC NMF MLP TACL TransE PPE TMC NMF MLP TACL

N=3

AP@N 8.12 18.63 40.55 47.56 56.95 61.46 10.91 22.94 38.14 44.48 52.84 57.37
AR@N 21.62 20.51 52.09 61.18 73.29 78.32 28.28 33.39 58.76 66.62 77.71 83.36
C@N 24.32 41.26 77.78 87.12 91.11 92.54 32.71 55.71 82.95 87.41 92.53 94.78

MAP@N 16.87 30.02 68.75 82.31 85.20 88.25 20.89 44.01 71.99 82.72 86.26 90.42
MAP@Total 21.12 23.87 54.49 65.30 77.08 82.24 24.92 35.20 58.59 69.87 79.83 85.74

Table 4: Performance(%) evaluation with randomly removing a half of tags of 50% of POIs

Dataset Beijing Chengdu
Model TransE PPE TMC NMF MLP TACL TransE PPE TMC NMF MLP TACL

N=3

AP@N 1.35 17.45 34.83 48.40 57.97 63.24 4.60 21.99 34.50 44.11 53.07 58.08
AR@N 3.84 21.58 45.73 62.54 74.47 80.66 11.75 32.57 54.52 66.26 78.08 84.28
C@N 4.06 51.80 78.50 89.07 92.00 93.70 13.81 55.68 80.26 87.15 92.89 94.90

MAP@N 1.52 35.84 67.50 83.19 85.44 88.89 8.42 38.55 69.68 82.02 85.39 89.66
MAP@Total 5.78 23.27 46.87 66.35 78.35 84.34 15.23 30.52 53.78 69.09 79.61 86.12

Figure 7: TACL and MLP’ s results at different ratio of POIs with incomplete tags

incomplete POIs. However, for each metric, we find that the down-
trend of TACL is less than the MLP model with ranging the in-
complete POI ratio from 10% to 50%, indicating that TACL is more
effective for completing tags of POIs.

7 ONLINE DEPLOYMENT – A CASE STUDY
Our framework has already been applied on Baidu Maps to im-
prove the quality of POI tags. Here we describe one deployed case
for tag refinement, “parent-kids” tag completion, to show the use-
fulness of TACL. A POI with “parent-kids” tag means it is suitable
for parent and kids to visit together. Such tag is valuable to con-
vey more information to parents. However, the “parent-kids” tag
is rare, and many candidate POIs for “parents-kids” tag are not an-
notated. Using our TACL framework, we increase the number of
POIs with “parent-kids” tag by 55.6%. A Product Manager of Baidu
Maps manually checked two hundreds new discovered POIs with
the “parent-kids” tag, and concluded that the accuracy of the dis-
covered result is 99.5%. Finally, these new discovered POIs with
“parent-kids” tags are deployed online on Baidu Maps on January

7, 2019. In Figure 8, we illustrate two POIs with the new labelled
tag of “parent-kids” (in Beijing andChengdu respectively) which
are exhibited on Baidu Maps since January 7, 2019. After the de-
ployment, the total click volume of the POIs having “parent-kids”
tag is increased by 38.0%.

8 CONCLUSION
In this paper, we study the tag refinement problem for Points of
Interest. We propose a collaborative learning framework, called
TACL, to tackle the tag refinement problem for POIs. To the best of
our knowledge, we are the first to study this problem.The proposed
framework contains three componentswhich are non-negativema-
trix factorization (NMF), pair-wise similarity matching and maxi-
mum likelihood estimation (MLE) formulti-label classification.The
three components are jointly trained on the same dataset and pro-
vide regularization to each other, aiming to search an optimal POI-
tag score matrix. Then the consensus of multiple views on the
POI-tagmatrix from different components can avoid biased estima-
tion of the model caused by incomplete or noisy tags. In addition,



(a) Beileou Theme Park (Beijing) (b) Panda Valley (Chengdu)

Figure 8: Tag refinement example on Baidu Maps

we also propose feature engineering method based on map query
data and user profile data. We conducted extensive experiments to
demonstrate the effectiveness of our proposed framework on noisy
and incomplete data, and present a discussion about the deployed
case of TACL’s output results on Baidu Maps.
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Figure 9: Effectiveness of collaborative learning

Table 5: User profile feature

Category Attribute Category Attribute

Sex Female

Age

< 18

Male 18-24

Marital Status Yes 25-34
No …

Interest Book Career Cook
… …

Stage Student Industry IT
… …

Consumption
Low

Income

≤ 2499
Medium 25003̃999
High 40007̃999

Education
High School ≥ 8000

College

Hobby

Fishing
Bachelor Hiking

Car Have car Cycling
No car …

A APPENDIX
A.1 Evaluation Metrics
The experiment resutls of tag refinement are evaluated with the
following metrics:

• AveragePrecision@N (AP@N)measures the average per-
centage of the top N predicted tags that are correct.

• Average Recall@N (AR@N) measures the percentage of
correct tags that are predicted out of all ground truth tags.

• Coverage@N (C@N)measures the percentage of POI with
at last one correctly predicted tag.

• Mean Average Precision (MAP@N) measures the mean
of the average precision scores for each POI of the top N
predicted tags. It considers the rank of the predicted tags.

• Total Mean Average Precision (MAP@Total) measures
mean of the average precision for each POI of all tags.

A.2 Effectiveness of collaborative learning
As we discussed in Section 5, TACL consists of three component:
NMF, pairwise and MLE. We conduct an experiment to demon-
strate the effectiveness of the collaborative joint learning of the
three models. As shown in Figure 9, with adding the components
into TACL, the performance of TACL is increasing for all metrics.
The results demonstrate that our ensemble framework is effective
to obtain better results.

A.3 Table for user profile feature
Table 5 shows the features of user profile data. All the features are
aggregated as features of POIs. Hence, the POI profile features have
the same number of dimensions as the user profile feature.
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