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Abstract—Ranking query independent scholarly articles is a
practical and difficult task, due to the heterogeneous, evolving
and dynamic nature of entities involved in scholarly articles.
To do this, we first propose a scholarly article ranking model
by assembling the importance of involved entities (i.e., articles,
venues and authors) such that the importance is a combination of
prestige and popularity to capture the evolving nature of entities.
To compute the prestige of articles and venues, we propose a novel
Time-Weighted PageRank that extends traditional PageRank
with a time decaying factor. We then develop a batch algorithm
for scholarly article ranking, in which we propose a block-wise
method for Time-Weighted PageRank in terms of an analysis
of the citation characteristics of scholarly articles. We further
develop an incremental algorithm for dynamic scholarly article
ranking, which partitions graphs into affected and unaffected
areas, and employs different updating strategies for nodes in
different areas. Using real-life data, we finally conduct an
extensive experimental study, and show that our approach is
both effective and efficient for ranking scholarly articles.

Keywords-scholarly article ranking; query independent; time-
weighted PageRank; block-wise algorithm; dynamic algorithm;

I. INTRODUCTION

Query independent ranking of scholarly articles has drawn
significant attentions from both academia [1]–[11] and in-
dustry [12]–[14]. Generally speaking, a ranking is a function
that assigns each item a numerical score. Query independent
ranking aims to give a static ranking based on the scholarly
data only, and is independent of how well articles match a
specific query. Such a ranking plays a key role in literature
recommendation systems, especially in the cold start scenario.

In the academia, popular approaches have witnessed a shift
from citation-count analysis [1], [2] to graph analysis [3]–[11],
as graph-based methods further leverage the global or local
structure of bibliographic networks and the interactions among
heterogeneous entities, and, hence, are typically more appro-
priate. Efforts have also been made from the industry. Google
Scholar [12] aims to rank articles in the way researchers
do, weighing the full text, where they were published, who
they were written by, as well as how often and how recently
they have been cited; Microsoft Academic [13] considers
how often and to which a publication is cited to determine
the ranking; And Semantic Scholar [14] proposes to use the
citation velocity, which is a weighted average number of article
citations in the last three years.

Scholarly articles are involved with multiple entities such as
authors, venues, dates and references. That is, scholarly article
ranking is essentially a problem of assessing the importance

of nodes in a heterogeneous network. However, effective and
efficient ranking of nodes in such a large complex network is a
difficult task due to the heterogeneous, evolving and dynamic
natures of involved entities [15], [16].

First, even if we are only to rank one type of entities (i.e.,
scholarly articles), the other types of entities (e.g., venues
and authors) are closely involved, and, moreover, different
types of entities may have different impacts on the ranking of
scholarly articles. Second, the importance of articles evolves
with time in a complex manner [17], [18]. Newly published
articles are very likely to have increasing impacts in the next
few years, and those published many years ago tend to have
decreasing impacts, which conforms to the universal citation
pattern of articles such that the number of citations generally
grows in the first two to three years, and then declines in
the following years [18]. In addition to the universal one,
individual articles indeed follow a diverse set of patterns
featured by the peak time of the number of citations [18].
Finally, academic data is dynamic and continuously growing.
Indeed, the number of articles in Microsoft Academic Graph
has exceeded 126 million, and keeps increasing at around 5.7
million per year [13]. This may cause certain long-term biases
into data, e.g., the number of citations increases significantly
over time [19], which should be properly considered for
scholarly article ranking.

Query independent ranking of scholarly articles remains
challenging [20], although there exists quite a bit of work
on scholarly article ranking, e.g., [1], [3]–[5]. Most previous
work exploits the time-dependent information of scholarly data
in the form of exponential decay [8]–[11], which fails to
capture the diverse citation patterns of individual articles [18].
Further, to our knowledge, little concern has been paid to
dynamic scholarly article ranking except [21] with a strong
and impractical assumption that there are no citations between
articles published in the same years.

Contributions & Roadmap. To this end, we propose an ef-
fective and efficient approach for query independent scholarly
article ranking in a dynamic environment.

(1) We first propose a Scholarly Article Ranking model,
referred to as SARank, by assembling the importance of three
classes of entities (articles, venues and authors) for scholarly
article ranking (Section II). The importance is a combination
of prestige and popularity to capture the evolving nature
of entities. To compute the prestige of articles and venues,
we propose a novel Time-Weighted PageRank with a time



decaying factor based on the citation statistics (instead of
simple exponential decay), and the prestige of authors is the
average prestige of all their published articles. The popularity
of an article is the sum of all its citation freshness (closeness
to the current year), while the one of venues and authors
is the average popularity of their associated articles. To our
knowledge, our Time-Weighted PageRank is among the first
to incorporate diverse citation patterns of individual articles
and to exploit citation statistics for scholarly article ranking.

(2) We then develop a batch algorithm for scholarly article
ranking (Section III), in which we propose a block-wise
method for Time-Weighted PageRank in terms of an analysis
of the citation characteristics of scholarly articles.

(3) We further develop an incremental algorithm for the
block-wise algorithm to deal with dynamic scholarly article
ranking (Section IV), which partitions graphs into affected and
unaffected areas, and employs different updating strategies for
nodes in affected and unaffected areas.

(4) Using three real-life scholarly datasets (AAN, DBLP and
MAG) and two sets of ground-truth (RECOM and PFCTN), we
finally conduct an extensive experimental study (Section V).
(a) We find that our model SARank improves the pairwise
accuracy [22] over (PRank [23], FRank [10], HRank [3]) by
(13.5%, 6.8%, 4.8%) and (12.0%, 3.0%, 3.2%) w.r.t. RECOM
and PFCTN on AAN, (12.7%, 5.0%, 4.9%) and (14.0%, 6.5%,
4.6%) w.r.t. RECOM and PFCTN on DBLP, and (6.5%, 2.5%,
2.2%) and (13.4%, 6.0%, 2.4%) w.r.t. RECOM and PFCTN
on MAG, on average, respectively. (b) Our batch algorithm
batSARank and incremental algorithm incSARank are also
efficient. Indeed, incSARank is on average (1.7, 2.8, 116) and
(2.0, 4.4, 245) times faster than (batSARank, FRank, HRank)
on the large DBLP and MAG, respectively.

II. RANKING MODEL

In this section, we first present Time-Weighted PageRank
for evaluating the importance of entities, defined as a com-
bination of the prestige and popularity, and then introduce
our ranking model SARank that assembles the importance of
articles, venues and authors involved in scholarly articles.

A. Time-Weighted PageRank

We first present Time-Weighted PageRank (TWPageRank)
based on citation statistics, as the direct use of PageRank for
ranking scholarly articles is problematic as discussed below.
(1) Different articles typically have different impacts in prac-
tice, and there is a need to differentiate, while PageRank
essentially assumes equal impacts.
(2) The semantics of citation relationships are time-dependent,
which means that citations at different periods of time may
reveal different information. Note that this has already been
exploited for scholarly article ranking [8], [9], [11], while
PageRank does not consider this temporal factor at all.
Time-Weighted PageRank (TWPageRank). Most previous
work simply exploits temporal information in the form of
exponential decay [8]–[11]. We rethink the usage of time
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Figure 1. Statistics of scholarly articles: (1) the (logscale) percentage
of papers in each year w.r.t. all papers (left) and (2) the (logscale)
percentage of citations in each year w.r.t. all citations (right) on
datasets AAN, DBLP and MAG, respectively.

information in terms of the impacts of scholarly articles. Recall
that articles are categorized into six citation patterns featured
by the time when the articles reach their citation peaks [18]:
(a) PeakInit with a single citation-count peak in the first five
years (but not the first year) after publication, (b) PeakMul
with distinct multiple peaks, (c) PeakLate with a single peak
in at least five years (but not the last year) after publication, (d)
MonDec with monotonically decreasing citations, (e) MonIncr
with monotonically increasing citations, and, (f) Other for
articles whose average numbers of citations per year are less
than 1. Though the number of citations is an indicator of the
impact of an article [1], [17], its impact is time-dependent but
not simply in the form of exponential decay that only considers
the case of MonDec. To unify these distinct citation patterns
and to make our ranking model succinct, we adopt that the
impact of an article tends to decay with time after the peak
time, as pointed out by the aging function in [17]. That is, the
impacts of articles directly decay with time only for those in
MonDec, and decay with time after the (highest) peak time for
those in PeakInit, PeakLate and PeakMul, and do not decay
for ones in MonIncr (which is rare). Also observe that each
individual article has its own peak time as articles may reach
their citation peaks in different patterns and time.

Based on the above discussion, we propose TWPageRank
that evaluates the prestige of nodes (e.g., scholarly articles)
in a directed graph, such that each node is attached with
time information. It differs from PageRank by weighing the
influence propagation using the impact weights on edges,
which represent the relative amounts of time-dependent pres-
tige that should be propagated from the edge sources to targets.
Formally, the impact weight on a directed edge (u, v), i.e., an
edge from u to v, is defined as:

w(u, v) =

{
1 Tu < Peakv

eσ(Tu−Peakv) Tu ≥ Peakv,
(1)

where Tu is the time of node u, Peakv is the peak time of
node v after which the impact weights of edges to v decay
with time, and σ is a negative number controlling the decaying
speed of the impacts. By default, Eq. (1) uses years as its time
granularity. Note that the time decaying factor σ is introduced
to provide flexibility for TWPageRank in various applications,
and its value is typically within a small interval, e.g., [−2, 0],
such that w(u, v) does not decay when σ = 0 and already
decays more than a half per year when σ = −1.

For scholarly article ranking, Tu is the publication time of
article u and Peakv should be ideally set to the time when



article v has the highest impact. Basically, it could simply be
the year when article v obtains the largest number of citations.
However, recent work reveals that the volume of scientific
publications and the number of citations grow exponentially
with time [19], [24]. We also collect and report the volume
and citation statistics on three scholarly datasets in Fig. 1,
which verifies the exponential distribution. Hence, we adopt
the scaled number of citations Ψ

(t)
v = Φ

(t)
v / logZ(t) such that

Φ
(t)
v and Z(t) are the number of citations of article v at year

t and the total number of citations at year t, respectively. The
peak time Peakv is the time that maximizes Ψ

(t)
v .

The update rule of TWPageRank is:

PR(v) = d
∑

(u,v)∈E

w(u, v)PR(u)

W (u)
+

1− d
n

, (2)

where PR(u) and PR(v) are the TWPageRank scores of u
and v, respectively, E is the set of edges, W (u) = Σvw(u, v)
is the sum of the impact weights on all edges from u, n is
the number of nodes and d is a damping parameter in (0, 1).
By Eq. (2), we can see that prestige is updated based on the
impact weights, not equally distributed.

Correspondingly, the matrix form of the update rule is:

PR(t) = dMTPR(t−1) + (1− d)e/n. (3)

Here PR(k) is the TWPageRank vector after k iterations, M
is the transition matrix such that Mu,v = w(u, v)/W (u) and
e is an n-dimensional all-one vector [1]n×1.

The linear system in Eq. (3) is equivalent to irreducible and
aperiodic Markov chains [25], which guarantees the following.

Proposition 1: TWPageRank converges to a unique vector on
any graph, regardless of the initial vector. 2

B. Ranking with Importance Assembling

In our model, the importance is defined as a combination of
the prestige and popularity. Intuitively, prestige favors those
with many citations soon after the publication of articles
or associated articles of venues and authors, and popularity
favors those with recent citations. Both prestige and popularity
capture the temporal nature of entities.

Our ranking model SARank, illustrated in Fig. 2, assembles
the importance of article, venue and author entities for schol-
arly article ranking, which is computed by the citation, venue
and author components, respectively. We next introduce the
details of the three components.
Citation component. The first component computes the im-
portance of articles using the citation information.

A citation graph Gc(V c, Ec) is firstly constructed using
the citation information such that (a) a node in V c denotes an
article, (b) a directed edge (u, v) in Ec denotes that u cites
v, and (c) each node is associated with two types of time
information: the publication year and the latest year having
the largest scaled number of citations.

(1) The prestige of articles is derived by applying TWPageR-
ank on the citation graph Gc, and each article v is assigned
the corresponding TWPageRank score as its prestige Prsc(v).

Figure 2. Ranking model SARank

(2) The popularity of an article is the sum of all its citation
freshness, i.e., the closeness to the current year:

Popc(v) =
∑

(u,v)∈Ec

eσ(T0−Tu). (4)

Here T0 is the current year, i.e., the largest Tu among all
articles in V c, σ is the negative decaying factor used in Eq. (1),
and eσ(T0−Tu) represents the freshness of citation (u, v).

Intuitively, the more recent citations an article has, the
higher its popularity is, no matter how long it has been
published. Here popularity is introduced to capture the recent
importance of articles, and articles with more recent citations
have higher popularity scores. Note that the popularity is also
normalized such that the sum of all articles is equal to 1,
similar to the prestige produced by TWPageRank.

(3) The prestige and popularity are finally combined to pro-
duce the importance of articles. Intuitively, an important article
is both prestigious and popular. Hence, the citation importance
score Impc(v) of an article is defined as a weighted combi-
nation of its prestige and popularity:

Impc(v) = Prsc(v)λPopc(v)1−λ, (5)

where λ ∈ [0, 1] is the importance weighting factor. The
rationales behind Eq. (5) are as follows. (a) Prestigious articles
with many recent citations are ranked at the top, as researchers
are very willing to find them; (b) Prestigious articles with
rare current citations are ranked lower, as researchers may
lose interests in these old articles; And (c) articles with many
recent citations are ranked higher, as researchers have potential
interests in those of recent attention.
Venue component. The second component computes the
importance of venues with their associated articles. As the
importance of a venue evolves with time, we treat the venue
in each year individually, and its importance is the sum of
importance in all individual years.

A venue graph Gv(V v, Ev) is firstly constructed using the
citation information among venues such that (a) a node in V v

represents a venue in a specific year, (b) a direct edge (s, t)
in Ev denotes that there exist articles published in venue (in a
specific year) s citing articles published in venue (in a specific
year) t, and (c) we use the impact weight wv(s, t) to denote
the weight from venues s to t, which is the sum of the impact
weights from articles published in s to t, i.e.,

wv(s, t) =
∑

u∈C(s),v∈C(t)

w(u, v). (6)

Here, C(s) and C(t) are the sets of articles published in s
and t, respectively, and w(u, v) is the impact weight of edge
(u, v) produced in the citation component.



The prestige of a venue in a specific year is computed
using the impact weights and the update rule in Eq. (2), and
the popularity of a venue in a specific year is defined as the
average popularity of its articles. The prestige and popularity
are combined to derive the importance of a venue in a specific
year in the same way as the citation component. Finally, the
importance of a venue is treated as the venue importance score
for all articles published in this venue.
Author component. The author component computes the
importance of authors with their published articles. Similar
to the venue component, we evaluate the importance of each
author, and compute the average importance of the authors of
an article as its author importance score.

One way to do this is to construct an author citation graph
such that (a) a node represents an author, and (b) a direct edge
(s, t) denotes that there exist articles of author s citing articles
of author t. However, it is easy to see that for each citation, the
corresponding two sets of authors are fully connected, which
makes it computationally expensive to compute the prestige of
authors on such an author citation graph with TWPageRank.

Hence, we choose to evaluate the prestige of an author with
the average prestige of all articles published by the author.
Similar to the venue component, the popularity of an author is
defined as the average popularity of her/his published articles.
Finally, the prestige and popularity are combined to derive the
importance along the same way as the citation component.
Ranking with importance assembling. The aforementioned
importance is finally assembled to produce the final ranking,
as illustrated in Fig. 2. Before assembling, each component
is properly scaled such that the average importance scores
of citations, venues and authors are the same. Let the scaled
importance scores of article v be Rc(v), Rv(v), and Ra(v)
from the citation, venue and author components, respectively.
The final ranking score R(v) is aggregated as follows:

R(v) = αRc(v) + βRv(v) + (1− α− β)Ra(v). (7)

Here aggregating parameters α and β and value (1− α− β)
regularize the contributions of the citation, venue and author
information, which make our model be able to fit to the various
ranking scenarios. As will be seen in the experiments, our
model performs well in two reasonable ranking scenarios by
using quite different aggregating parameters, and, moreover,
these parameters are indeed quite flexible to choose within
a certain range. Intuitively, these parameters indicate the in-
tensity of the correlation between the importance of scholarly
articles and the specific information.
Remarks. This work follows the graph-based formalization,
and further develops efficient batch and incremental algorithms
based on graphs for scholarly article ranking (Sections III
& IV). However, it is also possible to learn a discriminative
model that directly optimizes certain loss functions for rank-
ing, similar to [22] for ranking Web pages.

III. RANKING COMPUTATION

In this section, we present our batch algorithm for comput-
ing scholarly article ranking based on our model SARank.

A. Algorithm Framework

Our batch algorithm batSARank combines the importance
scores computed by the citation, venue and author compo-
nents. It takes as input academic graph data D and an iteration
threshold ε for TWPageRank and returns the scholarly article
ranking. It first constructs the citation graph Gc(V c, Ec) and
venue graph Gv(V v, Ev). Then it computes the prestige and
popularity of citation, venue and author components. Finally, it
combines the prestige and popularity of the three components
to produce the final ranking with Eq. (7).

For popularity computation, it is easy to see that (a) the
popularity of articles can be computed by scanning through
all citations once and adding the freshness of citations to their
corresponding articles by Eq. (4), and (b) the popularity of
venues in a specific year or authors is computed by averaging
the popularity of the articles published in the venues or by the
authors. That is, the popularity computation can be done by
scanning through all citations once.

For prestige computation, (a) as the one of authors is defined
as the average prestige of their published articles, it suffices to
scan through all author-article relationships for computing the
prestige of authors. (b) The prestige of articles and venues in a
specific year is computed by TWPageRank on citation graphs
and venue graphs, which is usually computed in an iterative
manner [23] and is the most expensive computation. Hence,
the key of the computation of our approach is a good solution
for computing TWPageRank.

B. TWPageRank Computation

The main result of this section is to speed up computing
TWPageRank on scholarly data.

Claim 2: A block-wise PageRank computation method [26] is
a good choice for TWPageRank on scholarly data. 2

The main idea of the block-wise PageRank computation is
that each strongly connected component (SCC) of the input
graph is treated as a block, and blocks are processed one by
one following the topological order of the block-wise graph,
i.e., each node represents a block of the original graph [26].
We next show Claim 2 by introducing and analyzing such a
block-wise computation method.
Block-wise algorithm batTWPR. It takes as input a citation
or venue graph G(V,E) and an iteration threshold ε, and
returns the TWPageRank vector PR of G. To update scores
of nodes in an SCC at a time, the edges of G are partitioned
into: (a) the set Ei of edges inside SCCS and (b) the set Ea of
edges across SCCS such that Ei ∩Ea = ∅ and E = Ei ∪Ea.
The update rule in Eq. (3) is revised accordingly to separate
E into Ei and Ea as follows.

PR(v) = d
∑

(u,v)∈Ei

Mu,vPR(u) + d
∑

(u,v)∈Ea

Mu,vPR(u) +
1− d
n

. (8)

It first computes the block-wise graph G′ by treating SCCS in
G as single nodes, and derives a topological order O of nodes
in G′. It then processes each SCC in the topological order O
with Eq. (8). Finally, it returns the TWPageRank vector. When



Table I
STATISTICS OF CITATION/VENUE GRAPHS AND WEB GRAPHS [28]

Largest SCC
Graphs Nodes Edges |SCC| edge ratio

citation-AAN 18,041 82,944 20 0.9%
citation-DBLP 3,140,081 14,260,658 23 1.6%
citation-MAG 126,909,021 526,498,920 351 0.1%
venue-AAN 565 22,527 18 2.8%
venue-DBLP 56,370 7,094,231 1,467 2.1%
venue-MAG 584,298 162,431,575 10,473 1.8%

web-BS 685,230 7,600,595 334,857 59.51%
web-G 875,713 5,105,039 434,818 66.98%

processing an SCC, it iteratively updates the TWPageRank
scores of the nodes in the SCC, and the iteration continues
until the sum changes of TWPageRank scores is less than
ε|scc|/|V |, where |scc| is the number of nodes in the SCC.
Note that there must exist a topological order O, as the block-
wise graph is a directed acyclic graph [27].

Corollary 3: The vector PR returned by batTWPR converges
such that ||PR − PR∗||1 < ε where vector PR∗ is the
convergent TWPageRank vector [26]. 2

Analysis of algorithm batTWPR. While similar block-wise
algorithms were originally proposed for Web graphs [26], we
next show that they are even better for the TWPageRank com-
putation associated with scholarly data. Given inpute graph
G(V,E), the block-wise graph and its topological order can
be computed in O(|V |+ |E|) time [27], and the edges in Ea
are only scanned once when updating TWPageRank scores.
From these, we have the following.

Lemma 4: Given a citation or venue graph G(V,E), algo-
rithm batTWPR runs in O(|V |+ |Ea|+ t|Ei|) time, where t
is the maximum number of iterations among all SCCS. 2

Recall that t is very likely to be in the scale of tens to
hundreds [23]. Hence, the efficiency of block-wise algorithm
batTWPR is mainly affected by |Ei|, i.e., the smaller |Ei| is,
the faster algorithm batTWPR is.
Observation. It is well-known that citations obey a natural
temporal order, i.e., an article only cites those published
earlier, and it is really rare for the mutual citations between two
articles published in the same time. That is, |Ei| is essentially
small for the citation and venue graphs of scholarly data.

To verify this observation, we also collect the statistics of
citation/venue graphs and Web graphs illustrated in Table I,
where Web graphs are extracted from berkely.edu and stan-
ford.edu domains in 2002 and from the Google programming
contest in 2002, respectively [28]. Due to the existence of the
“bow tie” structure and the giant SCC in Web graphs [29], the
SCC edge ratios |Ei|/|E| are greater than 59%. In contrast,
the SCCS in citation and venue graphs are quite small as a
result of the temporal order of citations, and |Ei|/|E| is less
than 3% for all tested citation and venue graphs. This specific
structure in scholarly data has been long ignored in the past
literature, which indeed has a positive impact on computations.
Taking t = 100 for example, algorithm batTWPR only needs
to scan 4|E| edges on citation and venue graphs, but over
59|E| edges on Web graphs.

By Corollary 3, Lemma 4 and the above analysis of our
block-wise algorithm, we have informally established Claim 2.
Time complexity analysis of the batch algorithm. By
Lemma 4 and the analyses in Section III-A, one can verify that
algorithm batSARank takes O(|V c| + |Eca| + t|Eci | + |V v| +
|Eva |+t|Evi |+|PA|) time, where |PA| is the number of author-
article relationships. The key of algorithm batSARank is to
compute TWPageRank with algorithm batTWPR. Compared
with the traditional power method [23], our block-wise algo-
rithm batTWPR speeds up computation by O((t− 1)(|Eca|+
|Eva |)) at an extra space cost for the block-wise graphs of Gc

and Gv and their topological orders.

IV. DYNAMIC RANKING COMPUTATION

Scholarly data is dynamic and continuously growing, and it
is impractical to recompute ranking from scratch once it gets
updated. In this section, we present an incremental algorithm
for our ranking model SARank.

A. Incremental Algorithm Framework

Our incremental algorithm incSARank incrementally com-
putes the popularity and prestige of associate entities. We
consider that an update ∆ = ∆V ∪ ∆E is added to a
(citation or venue) graph G(V,E), and the resulting graph
is G+(V ∪ ∆V,E ∪ ∆E), where ∆V is a set of nodes
with ∆V ∩ V = ∅, and ∆E is a set of directed edges
on ∆V and from ∆V to V only, as citation relationships
obey a natural temporal order, i.e., an article only cites those
published earlier, and it is rare for the mutual citations between
two articles published in the same time.
Incremental popularity computation. As the popularity of
articles is defined as the sum of the freshness of their citations,
it is convenient to maintain dynamically. Consider an updated
citation graph Gc,+(V c ∪ ∆V c, Ec ∪ ∆Ec) of Gc(V c, Ec),
and the updated popularity Pop+c (v) can be computed as:

Pop+
c (v) = Popc(v)eσ(T+

0 −T0) +
∑

(u,v)∈∆Ec

eσ(T+
0 −Tu), (9)

where Pop+c (v) (resp. Popc(v)) is the popularity of node v
on Gc,+ (resp. Gc), and T+

0 (resp. T0) is the current time on
Gc,+ (resp. Gc). By Eq. (9), it is easy to see that updating the
popularity of articles takes O( |V c|+ |∆V c|+ |∆Ec|) time.

The popularity of venues and authors is computed along
the same lines as their batch counterparts of algorithm
batSARank, as almost all venues and authors are affected by
the definitions of the popularity of venues and authors.
Incremental prestige computation. The prestige of authors
is computed along the same lines as the batch algorithm
batSARank, as almost all authors are affected by the definition
of the prestige of authors. For articles and venues, we propose
an incremental algorithm to maintain their prestige.

B. Incremental TWPageRank Computation

Consider a citation or venue graph G(V,E), its TWPageR-
ank vector PR and the topological order O of its block-wise
graph. Given an update ∆ = ∆V ∪∆E to G, the incremental



Input: An update ∆ = ∆V ∪∆E, TWPageRank vector PR of G,
and the topological order O of the block-wise graph G′.

Output: TWPageRank vector PR+ of the updated graph G+.
1. G′C := the block-wise graph of GC ;
2. ∆O := topological order of G′C ; O+ := ∆O/O;
3. label SCCS of GC as C, SCCS of G with outgoing edges having

weight changes as B, and the remaining SCCS of G as A;
4. for each node v′ following O+ do
5. scc := the corresponding SCC of v′;
6. if scc is labeled as C then
7. update PR+(v) (v ∈ scc) following algorithm batTWPR;
8. label SCC w′ as B with w′ ∈ G′ and (v′, w′) ∈ E+′;
9. else if scc is labeled as B then
10. update PR+(v) where v ∈ scc with Eq. (10) until the

sum of TWPageRank score changes is less than ε · |scc||V +| ;
11. label SCC w′ as B with (v′, w′) ∈ E′;
12. else PR+(v):=PR(v) · n/n+ where v ∈ scc;
13. return PR+.

Figure 3. Algorithm incTWPR for incremental TWPageRank

prestige computation for articles and venues in a specific year
is to compute the TWPageRank vector PR+ on the updated
graph G+(V ∪∆V,E ∪∆E).
Auxiliary data structure maintenance. Two auxiliary data
structures in the batch algorithm batTWPR need to be main-
tained: (a) the block-wise graph and a mapping that, given a
node of the citation or venue graph, returns the index of the
SCC to which it belongs, and (b) the topological order of the
nodes in the block-wise graph. Observe that these auxiliary
data structures can be easily maintained as follows.

(1) The block-wise graph of G+ needs to be computed, whose
SCCS consist of the SCCS in G and SCCS in the induced
subgraph G+[∆V ], as the edges of ∆E are on nodes in ∆V
and from ∆V to V only. Hence, only those new SCCS in
G+[∆V ] need to be computed.

(2) The updated topological order O+ = ∆O/O, where ∆O
is the topological order of the block-wise graph of induced
subgraph G+[∆V ]. Hence, only ∆O needs to be computed.
One can easily verify the following.

Proposition 5: O+ = ∆O/O is indeed a valid topological
order of the block-wise graph of G+. 2

Analysis of affected and unaffected areas. The TWPageR-
ank vector PR of graph G is mainly affected in two ways.

(1) Let VB,1 ⊆ V be the set of nodes reachable from the newly
added nodes ∆V , VB,2 ⊆ V be the set of nodes with outgoing
edges having weight changes, and VB,3 ⊆ V be the set of
nodes reachable from VB,2. Then VB = VB,1 ∪ VB,2 ∪ VB,3
is obviously the set of nodes in G affected by the update ∆.
TWPageRank scores on VB are re-iterated as follows, where
notations with superscript ‘+’ are defined on G+.

PR
+
(v) = d

∑
(u,v)∈E

+
i

M
+
u,vPR

+
(u) + d

∑
(u,v)∈E

+
a

M
+
u,vPR

+
(u)

+
n

n+

(
PR(v)− d

∑
(u,v)∈Ei

Mu,vPR(u)− d
∑

(u,v)∈Ea

Mu,vPR(u)
)
.

(10)

(2) Let VA = V \VB . Since nodes in VA are not reachable from

G
x

y

A GB GC

G ∆

Figure 4. An example of incremental TWPageRank computation

newly added or affected nodes, VA is essentially not affected
by the update ∆. And TWPageRank scores on VA only need
to scale with constant n/n+.

Let GA = (VA, EA), GB = (VB , EB) and GC = (VC ,
EC), respectively, and let EAB and ECB be the sets of edges
from GA to GB and from GC to GB , respectively. In this
way, graph G+ is divided into subgraphs {GA, GB , GC} and
edge sets {EAB , ECB}. We then have G+[∆V ] = GC , ∆E
= EC ∪ ECB , V = VA ∪ VB and E = EA ∪ EB ∪ EAB .
Incremental algorithm incTWPR. We now present our in-
cremental algorithm for TWPageRank, shown in Fig. 3.

It takes as input an update ∆ and the previous results on the
original graph G(V,E), and returns the TWPageRank vector
of the updated graph G+. It first incrementally computes the
topological order O+ (lines 1–2). After that, it labels the
newly added SCCS with C and existing SCCS with A or B,
depending on whether the existing SCCS have weight changes
on outgoing edges (line 3). It then processes each SCC in the
order O+ such that the TWPageRank scores of nodes in each
SCC are updated according to the labels (lines 4–12), and
finally returns the TWPageRank vector (line 13).

When processing VB with Eq. (10), edges in EAB can be
skipped since PR+(u) = n/n+ · PR(u) for u ∈ VA and
Mu,v = M+

u,v for (u, v) ∈ EAB . Besides, we use n/n+·PR as
the initial vector. Both of them can speed up the computation.

Example 1: Figure 4 illustrates an example of incremental
TWPageRank computation. Consider an update ∆ on the
original graph G. It is obvious that the update ∆ has no
impacts on the SCCs of G, and O+ defined earlier is a
valid topological order of G+′. The original graph G is then
partitioned into affected and unaffected areas, and subgraphs
GA, GB and GC are associated with node sets VA, VB and
∆V , respectively. Here edge weight on (y, x) changes due
to the change of the peak time of node x, and, hence, node
y as well as all nodes reachable from y are included in GB .
When updating the TWPageRank scores, following O+, scores
of nodes in GC , GB and GA are computed by iterations
from scratch, by iterations with Eq. (10) using the existing
TWPageRank vector and by scaling, respectively. 2

Theorem 6: The TWPageRank vector PR+ returned
by incTWPR converges such that ||PR+−PR∗||1 < ε, where
PR∗ is the convergent TWPageRank vector. 2

Observe that (a) a topological order of the block-wise graph
of GC can be computed in O(|∆V |+|∆E|) time, (b) updating
the TWPageRank scores of nodes in VB and VC costs O(|VB∪
VC |+ |EB,a ∪EC,a ∪ECB |) + t+|EB,i ∪EC,i|) time, where



Table II
STATISTICS OF AFFECTED AND UNAFFECTED AREAS

Citation graphs on Venue graphs on
Statis. AAN DBLP MAG AAN DBLP MAG
|VA| 47.4% 52.3% 69.2% 2.1% 8.7% 12.4%
|VB | 46.8% 40.0% 26.3% 92.0% 84.8% 84.6%
|VC | 5.8% 7.8% 4.5% 5.8% 6.4% 3.0%
|EA| 3.0% 2.4% 0.9% 0.0% 0.0% 0.0%
|EAB | 26.5% 30.2% 26.6% 1.2% 0.2% 0.1%
|EB | 59.8% 59.3% 65.5% 88.6% 92.3% 92.6%
|ECB | 10.4% 7.2% 7.0% 10.0% 7.3% 7.1%
|EC | 0.3% 0.9% 0.1% 0.2% 0.2% 0.1%

t+ is the maximum number of iterations among all SCCS in
GB and GC , and, finally, (c) updating the scores of nodes in
VA costs O(|VA|) time. From these, the following holds.

Proposition 7: Given an update ∆ = ∆V ∪∆E of citation or
venue graph G(V,E), the TWPageRank vector of G and the
topological order of G′, algorithm incTWPR runs in O(|V ∪
∆V |+ |EB,a ∪∆E|+ t+|EB,i ∪ EC,i|) time. 2

By Propositions 1 & 5 and Theorem 6, one can easily verify
the correctness of algorithm incTWPR. Note that (a) algorithm
incTWPR computes SCCS and derives the topological order
based on ∆ only, instead of G+, (b) it skips edges in EA∪EAB
when updating the scores of nodes in VA and VB , and (c)
the number t+ is very likely smaller than the number t of
batTWPR when updating scores of nodes in VB . All these
make incTWPR faster than batTWPR even though they have
very similar time complexity.
Time complexity analysis of the incremental algorithm.
By the analyses above, the time complexity of incSARank
is the same as batSARank, except that incSARank saves
O(|EcA ∪ EcAB |) and O(|EvA ∪ EvAB |) time when computing
TWPageRank on the updated citation and venue graphs with
an extra space cost for the affected/unaffected division and the
copy of original edge weights.

Despite of its similar time complexity to batSARank, al-
gorithm incSARank typically achieves a substantial efficiency
improvement over batSARank, according to our statistics of
affected/unaffected areas given a yearly update, i.e., articles of
2011 on AAN and 2015 on DBLP and MAG, respectively,
shown in Table II. (a) It saves O(|V c|+ |Ec|) and O(|V v|+
|Ev|) time when maintaining SCCS and the topological order
based on the update data only, where (|V |, |E|) are more than
(92%, 89%) of (|V +|, |E+|) on all tested citation and venue
graphs; (b) It saves O(|EcA∪EcAB |) time when updating scores
on V c, where edges in EcA∪EcAB account for more than 28%
of total; (c) It saves O(|Ec|) time when computing popularity
of articles, which accounts for more than 89% of total; Finally,
(d) it is likely to compute TWPageRank scores on V cB and V vB
with less iterations.

V. EXPERIMENTAL STUDY

In this section, we present an extensive experimental study
of our approach SARank, compared with three competi-
tive methods. Using three real-life scholarly datasets (AAN,
DBLP and MAG) and two sets of ground-truth (RECOM and
PFCTN), we conducted five sets of experiments to evaluate:

(1) the effectiveness of SARank, (2) the efficiency of our batch
algorithm batSARank and incremental algorithm incSARank,
(3) the memory cost, and (4) the impacts of parameters.

A. Experimental Settings
We first present the settings of our experimental study.

Datasets. We chose three datasets to test our approach.
(1) AAN records the collection of computational linguistics
articles published at ACL conferences from the year of 1965
to 2011 [3]. It contains 18,041 articles, 14,386 authors, 273
venues and 82,944 citations.
(2) DBLP records articles in the computer science domain
from 1936 to 2016 [30]. It contains 3.14 million articles, 1.74
million authors, 11,619 venues and 6.38 million citations.
(3) MAG records articles of various disciplines from 1800 to
2016 [13]. It contains around 127 million articles, 115 million
authors, 24,024 venues and 529 million citations.

To alleviate the issue of citation missing in DBLP, we added
citations by title matching based on MAG, and finally the
total number of citations is 14.26 million. These datasets were
further cleaned by deleting self-citations and citations from old
articles to new ones, which accounted for (0.1%, 0.8%, 0.4%)
of the total citations on (AAN, DBLP, MAG), respectively.
Accuracy metric and ground-truth. We adopted the pairwise
accuracy introduced by Microsoft [20], [22] to evaluate the
ranking quality, i.e., the fraction of times that a ranking agrees
with the correct ranking orders of scholarly article pairs:

PairAcc =
# of agreed pairs

# of all pairs
. (11)

We constructed two sets of ground-truth importance ranking
orders of article pairs, referred to as RECOM and PFCTN.
(1) RECOM assumes that scholarly articles with more recom-
mendations are of higher importance. We used the number of
recommendations of 93 articles on AAN [3], and, by exact
title matching, generated (2133, 966, 1972) scholarly article
pairs on (AAN, DBLP, MAG), respectively.
(2) PFCTN assumes that scholarly articles with more citations
are of higher importance. However, the number of entire
citations is obviously biased to old articles. Some work adopts
the number of future citations [6], [8], [9], which is also not
appropriate since this only estimates future impacts of articles,
not at the concerned time. For a fair ranking benchmark, we
propose to use both past and future citations with the same
period of time w.r.t. the concerned time, such that the number
of citations within these two periods reveals the importance of
articles at the concerned time. We hence divide each dataset
into two parts with a splitting (concerned) time such that (a)
the data before the splitting time is used for ranking model, (b)
the remaining part of data is used to collect future citations,
and (c) the most recent part of the data for ranking model with
the same time span as the future citations is used to collect past
citations. Moreover, articles in the same pairs were required to
be in similar research fields, by utilizing the Fields-Of-Study
information on MAG [13], and published in the same years,
similar to [6]. We used all pairs (around 50,000) for AAN,
and randomly chose 300,000 pairs for both DBLP and MAG.



Table III
ACCURACY EVALUATION WITH RECOM

Datasets PRank FRank HRank SARank

AAN 0.671 0.738 0.758 0.805
DBLP 0.651 0.729 0.730 0.778
MAG 0.615 0.655 0.658 0.680

Algorithms. We compared our approach with three competi-
tive methods: PRank [23], FRank [10] and HRank [3].
(1) PRank (PageRank) is a classic method that uses only
citation information to rank scholarly articles.
(2) FRank (FutureRank) combines citation, temporal and other
heterogeneous information to rank scholarly articles.
(3) HRank (HHGBiRank) is a very recent method using both
citation and heterogeneous information, such that heteroge-
neous entities are mutually reinforced based on hypernetworks.
Implementation. All algorithms were implemented with Mi-
crosoft Visual C++. For all algorithms, (a) the damping
parameter d and the iteration threshold ε were fixed to 0.85
and 10−8, respectively, (b) the default splitting years (time)
were selected such that the part of data for ranking model
accounted for around 75% of the entire data, which were
2008 on AAN and 2012 on both DBLP and MAG, and, (c)
for the sake of fairness, aggregating parameters of FRank,
HRank and SARank were tuned at the granularity of 0.1 and
the best results were reported. Moreover, ρ was set to -0.2
for FRank following [10], and the time decaying factor σ and
the importance weighting factor λ were set to -1 and 0.5 by
default for SARank.

All experiments were conducted on a PC with 2 Intel Xeon
E5–2630 2.4GHz CPUs and 64 GB of memory, running 64 bit
Windows 7 professional system. The usage of virtual memory
was forbidden. When quantity measures were evaluated, the
test was repeated over 5 times and the average is reported.

B. Experimental Results

We next present our findings.
Exp-1: Effectiveness with RECOM. In the first set of our
tests, we used ground-truth RECOM to evaluate the effective-
ness of our approach. All algorithms used articles published
before 2012, since article pairs of RECOM were from this
portion of articles. Aggregating parameters were selected as
follows: (α, β, γ) = (0.1, 0.2, 0.2) for FRank, (ai1, ai2, ai3) =
(0.6, 0.2, 0.2) for HRank (i ∈ [1, 3]), and (α, β) = (0.1, 0.8)
for SARank. The results of PairAcc are reported in Table III.

The PairAcc of PRank is much lower than the one of
other algorithms, indicating that citation information alone is
insufficient for scholarly article ranking, and other information
helps to refine the results. Moreover, SARank consistently
ranks better than all competitors. Indeed, SARank improves
the PairAcc over (PRank, FRank, HRank) by (13.5%, 6.8%,
4.8%) on AAN, (12.7%, 5.0%, 4.9%) on DBLP, and (6.5%,
2.5%, 2.2%) on MAG, respectively.
Exp-2: Effectiveness with PFCTN. In the second set of tests,
we used ground-truth PFCTN to evaluate the effectiveness.
Aggregating parameters were selected as follows: (α, β, γ) =
(0.7, 0.1, 0.2) for FRank, (ai1, ai2, ai3) = (0.3, 0.6, 0.1) for

HRank (i ∈ [1, 3]), and (α, β) = (0.8, 0.1) for SARank. Note
that with PFCTN the values of paraments α and β for SARank
are quite different from the ones with RECOM. To evaluate the
effectiveness of ranking in different scenarios, we varied three
factors in our tests: the splitting year Ys, the number Tp of
published years of articles, and the difference dif of past and
future citation counts. Given Ys, Tp and dif , we only used
article pairs whose articles were published within [Ys−Tp, Ys)
and the difference of past and future citation counts was equal
to or larger than dif to test the PairAcc.

Exp-2.1. To evaluate the effectiveness of ranking w.r.t. short-
term and long-term importance, we varied the splitting year
Ys from 2006 to 2011 on AAN and from 2010 to 2015 on
both DBLP and MAG, while fixed Tp = +∞ and dif =
1, i.e., using all scholarly article pairs. Intuitively, large and
small Ys correspond to short-term and long-term importance,
respectively. The results of PairAcc are reported in Figs. 5(a),
5(f) and 5(k), in which the red markers 2 in dashed lines mean
that HRank ran out of memory.

When varying Ys, the PairAcc of all algorithms increases
with the increment of Ys on both DBLP and MAG, indi-
cating that it is easier to assess short-term (large Ys) than
long-term (small Ys) importance. While the results on AAN
do not follow this trend, possibly because AAN does not
record the complete articles of 2007 and 2009. Moreover,
SARank consistently ranks better than all competitors, regard-
less of assessing short-term or long-term importance. Indeed,
SARank improves the PairAcc over (PRank, FRank, HRank)
by (17.9%, 5.4%, 5.5%) on AAN, (18.6%, 7.7%, 5.8%) on
DBLP, and (16.7%, 7.2%, 2.9%) on MAG, respectively.

Exp-2.2. To evaluate the effectiveness of ranking w.r.t. the pub-
lished time of articles, we varied the number Tp of published
years from 1 to +∞, while fixed Ys to default values of three
datasets and dif = 1, respectively. The results of PairAcc are
reported in Figs. 5(b), 5(g) and 5(l).

When varying Tp, the PairAcc of all algorithms increases
with the increment of Tp, since old articles (large Tp) are
easier to rank based on adequate information, while new
articles (small Tp) are hard to rank with little information
available. Moreover, SARank consistently ranks better than
all competitors, especially when Tp ≤ 3, i.e., ranking recently
published articles. Indeed, SARank improves the PairAcc over
(PRank, FRank, HRank) by (19.0%, 3.1%, 3.9%) on AAN,
(25.0%, 8.2%, 6.3%) on DBLP, and (23.6%, 8.3%, 3.2%) on
MAG, on average, respectively.

Exp-2.3. To evaluate the effectiveness of ranking w.r.t. the
difference of past and future citations, we varied the difference
dif of past and future citation counts from 1 to 7, while fixed
Ys to default values of three datasets and Tp = +∞. The
results of PairAcc are reported in Figs. 5(c), 5(h) and 5(m).

When varying dif , the PairAcc of all algorithms increases
with the increment of dif , since pairs with larger dif are easier
to rank. Moreover, SARank consistently ranks better, regard-
less of easy or difficult article pairs. Indeed, SARank improves
the PairAcc over (PRank, FRank, HRank) by (12.0%, 3.0%,
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Figure 5. Accuracy evaluation with PFCTN (all) and RECOM ((d)–(e), (i)–(j) and (n)–(o))
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Figure 6. Efficiency evaluation on DBLP ((a)–(b)) and MAG ((c)–(d))

3.2%) on AAN, (14.0%, 6.5%, 4.6%) on DBLP, and (13.4%,
6.0%, 2.4%) on MAG, on average, respectively.

Exp-3: Efficiency. In the third set of tests, we evaluated the
efficiency of our algorithms. We compared our algorithms
with powTWPR and powSARank, which were the same to
batTWPR and batSARank except using power method for
TWPageRank computation, and with algorithms FRank and
HRank. Here PRank was omitted due to its effectiveness. We
varied the splitting year Ys from 2009 to 2015 and tested the
running time on both DBLP and MAG. For incremental al-
gorithms, base and update parts consisted of data before 2008
and within [2008, Ys), respectively. The results of running time
are reported in Fig. 6, where the red markers 2 in dashed lines
mean that HRank ran out of memory.

When varying Ys, the running time of all algorithms in-
creases with the increment of Ys, and our incremental al-
gorithms consistently run faster than all competitors, espe-
cially with less update data. For TWPageRank computation,
algorithm incTWPR is on average (1.9, 3.8) and (2.5, 4.1)
times faster than (batTWPR, powTWPR) on DBLP and
MAG, respectively. For scholarly article ranking, algorithm
incSARank is on average (1.7, 3.1, 2.8, 117) and (2.0, 3.0,

Table IV
MEMORY COSTS ON DBLP AND MAG

Datasets Data PRank FRank HRank SARank

DBLP 289MB 264MB 404MB 1.34GB 1.28GB
MAG 10.5GB 8.7GB 14.3GB 61.4GB 48.1GB

4.4, 245) times faster than (batSARank, powSARank, FRank,
HRank) on DBLP and MAG, respectively.

In our tests we adopted a yearly update policy due the limi-
tation of available time information. In practice our algorithms
may bring more efficiency benefits since the update is usually
more frequent, such that the data updates are smaller and the
unaffected area is very likely much larger.

Exp-4: Memory cost. In the fourth set of tests, we evaluated
the memory cost of our algorithm on the large DBLP and
MAG. For a fair comparison, we used all data on DBLP and
data before 2014 on MAG such that HRank could finish the
test. The results are reported in Table IV, where column ‘Data’
records the size of the academic graph data, i.e., the citation
graph, author-article relationships, article-venue relationships
and time information of articles.

Algorithm PRank uses the least memory, followed by
algorithms FRank, SARank and HRank, respectively. The



(a) AAN with RECOM (b) DBLP with RECOM (c) MAG with RECOM
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Figure 7. Accuracy evaluation: varying aggregating parameters α and β

Table V
ACCURACY EVALUATION USING DIFFERENT COMPONENTS WITH

RECOM (ROWS 2–4) AND PFCTN (ROWS 5–7).
Datasets C V A CV CA VA CVA

AAN 0.752 0.616 0.649 0.809 0.764 0.747 0.810
DBLP 0.735 0.581 0.640 0.784 0.749 0.729 0.785
MAG 0.635 0.534 0.553 0.697 0.673 0.648 0.698
AAN 0.785 0.557 0.761 0.849 0.866 0.771 0.870
DBLP 0.713 0.603 0.725 0.843 0.847 0.740 0.856
MAG 0.736 0.628 0.718 0.848 0.857 0.751 0.874

memory used by PRank is even less than the data size as
it uses the citation graph only. Our SARank model costs more
memory than FRank, but less than HRank. This is because
SARank further combines article-venue relationships ignored
by FRank, and assembles multiple rankings based on prestige
and popularity, a price paid to achieve better effectiveness.
Exp-5: Impacts of parameters. In the last set of tests, we
evaluated the impacts of time decaying factor σ, importance
weighting factor λ, aggregating parameters α and β, and the
TWPageRank. We fixed these parameters as well as Ys to their
default values, used the TWPageRank proposed in this work
by default, and tested the PairAcc with the entire RECOM and
PFCTN (Tp = +∞, dif = 1).
Exp-5.1. To evaluate the impacts of the time decaying factor
σ, we varied σ from -1.6 to -0.4. The results of PairAcc are
reported in Figs. 5(d), 5(i) and 5(n).

When varying σ, the PairAcc of SARank is very stable
on all datasets using both RECOM and PFCTN. Indeed,
with RECOM and PFCTN, the PairAcc only varies (0.42%,
1.55%, 0.81%) and (1.26%, 0.96%, 1.16%) on (AAN, DBLP,
MAG), respectively. The running time varies (11.3%, 8.6%)
on average only on (DBLP, MAG), respectively.
Exp-5.2. To evaluate the impacts of importance weighting
factor λ, we varied λ from 0 to 1. The results of PairAcc

are reported in Figs. 5(e), 5(j) and 5(o). Note that parameter
λ has no impacts on efficiency.

When varying λ, the PairAcc of SARank first increases and
then decreases on all datasets with both PFCTN and RECOM,
except on DBLP with RECOM. This result indicates that
combining prestige and popularity generally produces more
robust results than using either of prestige and popularity.
Indeed, with RECOM and PFCTN, the PairAcc of combining
prestige and popularity is (10.2%, 10.7%, 5.5%) and (8.0%,
8.7%, 9.0%) higher than using prestige alone, and is (1.2%,
-0.1%, 1.0%) and (1.0%, 1.0%, 0.3%) higher than using
popularity alone on (AAN, DBLP, MAG), respectively.

Exp-5.3. To evaluate the impacts of aggregating parameters α
and β, we varied α and β at the granularity of 0.01. Again,
parameters α and β have few impacts on efficiency. The results
are reported in Fig. 7, where the parameters α and β are set
by default (used earlier) to the corresponding values of α-axis
and β-axis of the PairAcc marked with ?, respectively.

When varying α and β, the PairAcc of SARank changes
gently, as shown in Fig. 7. The optimal PairAcc is obtained
within a single region, rather than a complex collection of
optimal regions. Moreover, the PairAcc keeps at a high level
within a certain (α, β) combination space around the optimal
region, as shown in Fig. 7. Further, the optimal parameters
on the same set of ground-truth are very similar for (AAN,
DBLP and MAG), indicating that the setting of α and β can
be easily transferred across different datasets. To conclude,
SARank is very robust to parameters α and β, and it is quite
flexible for choosing proper values of parameters α and β.

Moreover, this enables to verify the effectiveness of impor-
tance assembling from different components, whose results
are reported in Table V, in which letters C, V and A stand



0.55

0.65

0.75

0.85

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.14%
+0.70%

+0.23%

+0.42%

+2.02%
+3.56%

+3.47%

+3.19%

+2.16%

+2.20%

Pa
ir

A
cc

importance weighting factor

DRank SARank

(a) AAN with RECOM

0.55

0.65

0.75

0.85

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.41%
+0.00%

+0.21%

+1.35%

+0.41%

+0.10%

+2.69%

+6.21%

+10.15%

+10.4%

Pa
ir

A
cc

importance weighting factor

DRank SARank

(b) DBLP with RECOM

0.55

0.65

0.75

0.85

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

+0.86%

+1.27%

+2.08%

+2.59%

+2.64%

+3.80%

+4.51%

+4.21%

+4.36%

+5.68%Pa
ir

A
cc

importance weighting factor

DRank SARank

(c) MAG with RECOM

0.72

0.78

0.84

0.90

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.06%
-0.05%

+0.03%
-0.05%

+0.18%

+0.43%

+0.58%

+0.70%

+0.85%

+0.29%

Pa
ir

A
cc

importance weighting factor

DRank SARank

(d) AAN with PFCTN

0.72

0.78

0.84

0.90

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05%
-0.03%

-0.01%
-0.04%

+0.02%

+0.16%

+0.36%

+0.71%

+1.24%

+2.42%Pa
ir

A
cc

importance weighting factor

DRank SARank

(e) DBLP with PFCTN

0.72

0.78

0.84

0.90

0.95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.03%
-0.03%

-0.01%
+0.02%

+0.06%

+0.15%

+0.27%

+0.32%

+0.29%

-0.35%

Pa
ir

A
cc

importance weighting factor

DRank SARank

(f) MAG with PFCTN

Figure 8. Impacts of TWPageRank on accuracy: varying importance weighting factor λ

for citation, venue and author components, respectively. The
ranking based on all components consistently performs the
best, using both RECOM and PFCTN, which justifies the use
of importance assembling for ranking scholarly articles.

Exp-5.4. To evaluate the impacts of our TWPageRank, we
compared our SARank with DRank, an alternative of SARank
by removing the peak time in Eq. (1) of TWPageRank, i.e.,
w(u, v) = eσ(Tu−Tv). To better understand the impacts, we
varied the importance weighting factor λ from 0.1 to 1. Note
that the ranking results are the same when λ = 0 due to
the same popularity computation. The results are reported
in Fig. 8, where the numbers represent the improvement of
PairAcc by SARank over DRank.

When varying λ, the PairAcc of SARank is better than the
one of DRank in most cases, which shows the superiority of
the TWPageRank than directly decaying without introducing
the peak time. The PairAcc difference of these two algorithms
is higher with RECOM than with PFCTN, since the two algo-
rithms are just using citation information to predict past and
future citations with PFCTN. Moreover, algorithm SARank
is consistently better than DRank when 0.5 ≤ λ ≤ 0.9.
The improvement decreases with the decrease of λ as the
popularity dominates the ranking with small λ, and in some
cases, DRank outperforms SARank. Overall, with RECOM
and PFCTN, SARank improves the PairAcc over DRank by
(1.78%, 3.07%, 3.20%) and (0.29%, 0.48%, 0.11%) on (AAN,
DBLP, MAG) on average, respectively.

The TWPageRank has a minor impact on efficiency, and
the running time of the two algorithms only varies (6.34%,
4.83%) on (DBLP, MAG) on average, respectively.

Summary. From these tests, we find the followings.

(1) Our model SARank is effective for ranking scholarly arti-
cles, which is consistently better than competitive methods in
all tests. With RECOM and PFCTN, SARank improves PairAcc
over (PRank, FRank, HRank) by (13.5%, 6.8%, 4.8%) and
(12.0%, 3.0%, 3.2%) on AAN, (12.7%, 5.0%, 4.9%) and
(14.0%, 6.5%, 4.6%) on DBLP, and (6.5%, 2.5%, 2.2%) and
(13.4%, 6.0%, 2.4%) on MAG, on average, respectively.

(2) Our batch algorithm batSARank and incremental algo-
rithm incSARank are also efficient. Our incremental algorithm
incSARank is on average (1.7, 3.1, 2.8, 117) and (2.0, 3.0,
4.4, 245) times faster than (batSARank, powSARank, FRank,
HRank) on the large DBLP and MAG, respectively.
(3) Our ranking model SARank introduces the time decaying
factor σ, importance weighting factor λ and aggregating
parameters α and β for the sake of practicability and flex-
ibility in real-life applications, and, from our tests, SARank
is very robust to these parameters. Moreover, the proposed
TWPageRank is generally more effective than directly using
exponentially decayed impact weights.

VI. RELATED WORK

Scholarly article ranking has shifted from citation-count
analysis [1], [2] to graph analysis [3]–[11]. Based on the infor-
mation used, these methods are divided into four categories:
(a) using the citation information only [1], [2], [7], (b) using
the citation and temporal information [8], [11], (c) using the
citation information and other heterogeneous information, e.g.,
authors and venues of articles [3], [4], and (d) combining the
citation, temporal and other heterogeneous information [6],
[9], [10]. Our work belongs to the last category aiming at fully
employing information available for scholarly article ranking.

PageRank [23] and its extensions have been extensively
used for citation analyses [5]. While PageRank equally prop-
agates scores along outlinks, Weighted PageRank extends
PageRank by distributing scores based on certain criteria such
as popularity of pages [31] or authority of authors [32].
Scholarly graphs belong to temporal graphs [33], and temporal
information is a key factor for scholarly article ranking. There
has been work extending temporal information into PageRank,
e.g., exponentially decayed weights [8], exponentially decayed
initial vectors [11] and time-dependent weights based on co-
authorship [34]. Differently, our Time-Weighted PageRank is
designed based on a deep analysis of scholarly articles, and
discriminately propagates scores in terms of citation statistics.

Dynamic algorithms have proven useful for various tasks
by avoiding computing from scratch [35]. To our knowledge,



little concern has been paid to dynamic scholarly article
ranking except that [21] uses PageRank in dynamic citation
networks. However, its solution is based on a strong and
impractical assumption that there are no citations between
articles in the same years. Further, although there exist several
studies on incremental PageRank computation [36]–[38] and
on incremental PageRank approximation [39], [40], they are
not designed for scholarly article ranking. In this work, we
study dynamic scholarly article ranking in the general setting
by eliminating the strong and impractical assumption. Our
incremental algorithm is designed for the block-wise algorithm
of Time-Weighted PageRank, and is based on the citation char-
acteristics, both of which have never been exploited before.

Ensemble methods use multiple learners to obtain better
performance than could be obtained from a constituent learner
alone [41]. In this work, we leverage importance assembling
to produce better and more robust ranking for scholarly
articles [20], [41], [42].

VII. CONCLUSIONS

We have proposed a new model SARank for scholarly
article ranking, which assembles the importance of article,
venue and author entities. We have also proposed efficient
batch and incremental algorithms for the computation of
their importance, a combination of prestige and popularity.
As shown by the experimental study, our approach is both
effective and efficient for scholarly article ranking.

A couple of topics need further investigation. First, we
are to clean scholarly data with external data sources and to
extend our model with affiliation and discipline information
for further improving the quality of ranking. Second, we are
to study distributed algorithms, similar to [43] that computes
PageRank in a distributed environment.
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