
Fast Computation of Dense Temporal Subgraphs

Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, Jinpeng Huai

SKLSDE Lab, Beihang University, China

Beijing Advanced Innovation Center for Big Data and Brain Computing

1

Graphs are dynamic

2
*All images are downloaded from Google.

Motivation

3

A dense temporal subgraphs corresponds to a crowded area
spanning over a continuous time period.

Temporal graph: a continuous sequence of snapshots (each
snapshot records the status of a graph at a specific timestamp)

Dense temporal subgraph: a subgraph having heavy edge
weights over a continuous time period

…

…

…

Outline

 The FDS problem: analyses and challenges

 A data-driven approach

 Experimental study

 Summary

4

Temporal graphs and subgraphs

5

Temporal graph G(V, E, F) with T timestamps

• nodes and edges keep unchanged

• edge weights constantly and regularly vary
with timestamps

• T snapshots: G1(V, E, F1), G2(V, E, F2),
…, GT(V, E, FT)

Temporal subgraph H(Vs, Es, Fs, i, j)

• time interval [i, j] ⊆ [1, T]

• subgraph (Vs, Es) of (V, E)

• denote H(V, E, Fs, i, j) as G[i, j]

Cohesive density cdensity(G)

• sum of edge weights among all snapshots

cdensity(G)=36

cdensity(H)=21

Problem statement and complexity analysis

6P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

 FDS: finding dense subgraphs
• find a connected temporal subgraph with the greatest

cohesive density

cdensity(H)=44

cdensity(G)=36

Problem statement and complexity analysis

 Problem hardness[Bogdanov et al. 11]

7P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

 Our approximation hardness result

• the FDS problem is NP-complete, even for a temporal
network with a single snapshot and with +1 or -1 edge
weights only.

• the cohesive density of the optimal dense temporal subgraph
is NP-hard to approximate within any constant factor.

 proof sketch: building an approximation factor preserving
reduction from the net worth maximization problem, which is NP-
hard to approximate within any constant factor.

 FDS: finding dense subgraphs
• find a connected temporal subgraph with the greatest

cohesive density

Challenges

 Filter-and-Verification[Bogdanov et al. 11]

• consider all time intervals [i, j] and find dense subgraphs by
fixing [i, j] each time

• filter [i, j] if its upper bound of cohesive density is worse than
the best cohesive density achieved

• prune 99% of a total of T*(T+1)/2 time intervals

8P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

T 141 447 1,414 ··· 14,142

T*(T+1)/2 104 105 106 ··· 108

unpruned 102 103 104 ··· 106

Filter-and-Verification is insufficient for large temporal graphs!

A new and better algorithm design philosophy is needed.

determine a time interval [i, j]

find a dense subgraph given [i, j]

find a dense temporal

subgraph

Outline

 The FDS problem: analyses and challenges

 A data-driven approach

 Experimental study

 Summary

9

Main ideas

 Employ hidden data statistics to explore k time intervals

• k is typically a small constant independent of T, e.g., 10

10

T 141 447 1,414 ··· 14,142

T*(T+1)/2 104 105 106 ··· 108

unpruned 102 103 104 ··· 106

our approach k k k … k

 Our data-driven approach FIDES

• step 1: identify k time intervals involved with dense subgraphs

 employing hidden data statistics and drawing characteristics of
targeted time intervals

• step 2: compute dense subgraphs given time intervals

 building the connections with the NWM problem, and exploiting
effective and efficient optimization techniques

Big graph
friendly

1000x faster while remain comparable quality of dense subgraphs

Step 1: Hidden data statistics

11

 Evolving convergence phenomenon (ECP)

• edge weights evolve in a convergent way

• not completely realistic, but admit a nice mathematical
development

ECP assures an important characteristic of targeted time intervals.

 Convergent evolution

• organisms not closely related
independently evolve similar traits
as a result of having to adapt to
similar environments

Step 1: Characteristics of time intervals

cohesive density curve, y(x) = cdensity(Gx)

12

C2: All dense subgraph have a non-negative cohesive density.

C3: G[i, j] with a higher positive cohesive density has a higher
probability of containing a dense subgraph.

C1: To find the dense subgraph, we only need to consider the

time intervals [i, j] such that the cohesive density curve has a local

maximum at certain points between i and j under ECP.

must be
denser!

top-k for better

Step 1: Identifying k time intervals

13

1. compute local maxima/minima of the cohesive density curve;

2. extend local maxima/minima to peaks/valleys of the curve;

3. generate time intervals containing local maxima;

4. find the top-k time intervals having the largest positive cdensity;

[i, j]

[i, j]

Time complexity: O((T+h2)|E|), h is the # of local maxima/minima

FIDES recap

14

• step 2: compute dense subgraphs given time intervals
(referred to as computeADS)

 building the connections with the NWM problem

 exploiting effective and efficient optimization techniques

• step 1: identify k time intervals involved with dense subgraphs

 hidden data statistics: evolving convergence phenomenon

 three characteristics of targeted time intervals

 top-k time intervals containing a local maximum and having
the largest positive cohesive density

Step 2: The NWM problem

15

 Net worth maximization
• input: a graph with non-negative node and edge weights

• output: a subtree that maximizes the net worth

 net worth = sum of node weights – sum of edge weights

Image credit: Ivana Ljubic, https://homepage.univie.ac.at/ivana.ljubic/research/pcstp/

Filled nodes have

node weight 0

A feasible but not

optimal subtree
10

Step 2: Connections with the NWM problem

16

temporal subgraph G[i, j]

dense subgraph in G’ is equivalent to NWM subtree in G’c

aggregate graph G’(V, E, f)

where f(e)=∑Ft(e), t∈[i, j]

converted graph G’c(Vc, Ec)
with node and edge weights

connected components

only considering

positive weight edges

Step 2: Optimization techniques

17

strong merging: merge nodes that belong to the same NWM subtree;

strong pruning: compute an optimal subtree ST on the MST;

bounded probing: optimize ST by probing nodes in bounded distance;

Step 2: Optimization techniques

18

strong merging: merge nodes that belong to the same NWM subtree;

strong pruning: compute an optimal subtree ST on the MST;

bounded probing: optimize ST by probing nodes in bounded distance;

Time complexity: O(|V|+|E|+(|Vc|+|Ec|) log|Vc|)

Outline

 The FDS problem: analyses and challenges

 A data-driven approach

 Experimental study

 Summary

19

Experimental setups

 Data sets

20

Data sets |V| |E| T adr Description

BJData 82,093 108,238 289 0.44
real-life Beijing road
network with traffic status

SYNData
50,000 ~
400,000

2|V|
200 ~
2,000

0.05 ~
0.35

synthetic temporal network
used in [Bogdanov et al. 11]

P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

 Algorithms
• FDS given time intervals: computeADS & topDown [Bogdanov et al., 11]

• FDS on temporal graphs: FIDES & MEDEN [Bogdanov et al., 11]

• activation density adr: ratio of positive weight edges

 Experimental goals
• verify the rationale behind evolving convergence phenomenon
• test the quality of dense subgraph found by computeADS and FIDES
• test the efficiency of computeADS and FIDES

Verification of ECP

 Proportion of edges that satisfy ECP

• 96% on BJData

• 90% on average on SYNData

21

ECP is quite common on both real-life and synthetic temporal graphs.

The characteristics based on ECP work, though ECP is not completely satisfied.

 Edge weights evolve in a convergent way

• to what degree does ECP hold in temporal graphs?

Algorithms computeADS vs. topDown

22

Algorithm computeADS is better than topDown in both quality and efficiency.

SYNDataSYNData

BJData

SYNData

SYNData

Algorithms FIDES vs. MEDEN: quality

23

Dense subgraphs found by FIDES are (+0.28%, -0.16%) better than those found

by MEDEN on (BJData, SYNData).

NA: out of memory

SYNDataSYNData

BJDataSYNData

Algorithms FIDES vs. MEDEN: efficiency

24

FIDES is (2,980, 1,079) times faster than MEDEN on (BJData, SYNData).

x: out of memory

SYNDataSYNData

BJDataSYNData

Outline

 The FDS problem: analyses and challenges

 A data-driven approach

 Experimental study

 Summary

25

Summary

 A data-driven approach (big graph friendly)
• identify k time intervals by employing hidden data statistics

• build the connection between FDS and NWM

• three algorithm optimization techniques

 Find dense subgraphs on large temporal graphs
• NP-complete and NP-hard to approximate

• Filter-and-Verification is insufficient for large temporal graphs

 Comparison with the state-of-the-art solution on
both real-life and synthetic data
• comparable in quality of dense subgraphs found

• three orders of magnitude faster

26

Thanks!

Q & A

27

Welcome to tomorrow afternoon’s poster session!

Synthetic data generator[Bogdanov et al., 11]

 Random graphs as underlying graphs

 Step 1: all edges in every snapshots have weight -1

 Step 2: randomly activate an edge in a specific snapshot
(+1), and activate its neighboring edges and the same
edge in the next snapshots with certain probabilities. Later
activated edge will perform the same activation process.

 Step 3: repeat step 2 until a prefixed adr is satisfied

2828P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

