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Graphs are dynamic
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*All images are downloaded from Google. 



Motivation
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A dense temporal subgraphs corresponds to a crowded area 
spanning over a continuous time period.

Temporal graph: a continuous sequence of snapshots (each 
snapshot records the status of a graph at a specific timestamp)

Dense temporal subgraph: a subgraph having heavy edge 
weights over a continuous time period

…

…

…



Outline
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 Summary
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Temporal graphs and subgraphs
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Temporal graph G(V, E, F) with T timestamps

• nodes and edges keep unchanged

• edge weights constantly and regularly vary 
with timestamps

• T snapshots: G1(V, E, F1), G2(V, E, F2), 
…, GT(V, E, FT)

Temporal subgraph H(Vs, Es, Fs, i, j)

• time interval [i, j] ⊆ [1, T]

• subgraph (Vs, Es) of (V, E)

• denote H(V, E, Fs, i, j) as G[i, j]

Cohesive density cdensity(G)

• sum of edge weights among all snapshots

cdensity(G)=36 

cdensity(H)=21 



Problem statement and complexity analysis
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 FDS: finding dense subgraphs
• find a connected temporal subgraph with the greatest 

cohesive density

cdensity(H)=44 

cdensity(G)=36 



Problem statement and complexity analysis

 Problem hardness[Bogdanov et al. 11]

7P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

 Our approximation hardness result

• the FDS problem is NP-complete, even for a temporal 
network with a single snapshot and with +1 or -1 edge 
weights only.

• the cohesive density of the optimal dense temporal subgraph 
is NP-hard to approximate within any constant factor.

 proof sketch: building an approximation factor preserving
reduction from the net worth maximization problem, which is NP-
hard to approximate within any constant factor.

 FDS: finding dense subgraphs
• find a connected temporal subgraph with the greatest 

cohesive density



Challenges

 Filter-and-Verification[Bogdanov et al. 11]

• consider all time intervals [i, j] and find dense subgraphs by 
fixing [i, j] each time

• filter [i, j] if its upper bound of cohesive density is worse than 
the best cohesive density achieved

• prune 99% of a total of T*(T+1)/2 time intervals

8P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

T 141 447 1,414 ··· 14,142

T*(T+1)/2 104 105 106 ··· 108

# unpruned 102 103 104 ··· 106

Filter-and-Verification is insufficient for large temporal graphs! 

A new and better algorithm design philosophy is needed.

determine a time interval [i, j]

find a dense subgraph given [i, j]

find a dense temporal 

subgraph
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Main ideas

 Employ hidden data statistics to explore k time intervals

• k is typically a small constant independent of T, e.g., 10
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T 141 447 1,414 ··· 14,142

T*(T+1)/2 104 105 106 ··· 108

# unpruned 102 103 104 ··· 106

our approach k k k … k

 Our data-driven approach FIDES

• step 1: identify k time intervals involved with dense subgraphs

 employing hidden data statistics and drawing characteristics of 
targeted time intervals

• step 2: compute dense subgraphs given time intervals

 building the connections with the NWM problem, and exploiting 
effective and efficient optimization techniques

Big graph 
friendly

1000x faster while remain comparable quality of dense subgraphs 



Step 1: Hidden data statistics
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 Evolving convergence phenomenon (ECP)

• edge weights evolve in a convergent way

• not completely realistic, but admit a nice mathematical 
development

ECP assures an important characteristic of targeted time intervals. 

 Convergent evolution

• organisms not closely related 
independently evolve similar traits 
as a result of having to adapt to 
similar environments



Step 1: Characteristics of time intervals 

cohesive density curve, y(x) = cdensity(Gx)
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C2: All dense subgraph have a non-negative cohesive density.

C3: G[i, j] with a higher positive cohesive density has a higher 
probability of containing a dense subgraph.

C1: To find the dense subgraph, we only need to consider the

time intervals [i, j] such that the cohesive density curve has a local

maximum at certain points between i and j under ECP.

must be 
denser!

top-k for better



Step 1: Identifying k time intervals
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1. compute local maxima/minima of the cohesive density curve; 

2. extend local maxima/minima to peaks/valleys of the curve;

3. generate time intervals containing local maxima;

4. find the top-k time intervals having the largest positive cdensity;

[i, j]

[i, j]

Time complexity: O((T+h2)|E|), h is the # of local maxima/minima



FIDES recap
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• step 2: compute dense subgraphs given time intervals 
(referred to as computeADS)

 building the connections with the NWM problem

 exploiting effective and efficient optimization techniques

• step 1: identify k time intervals involved with dense subgraphs

 hidden data statistics: evolving convergence phenomenon

 three characteristics of targeted time intervals

 top-k time intervals containing a local maximum and having 
the largest positive cohesive density



Step 2: The NWM problem
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 Net worth maximization
• input: a graph with non-negative node and edge weights

• output: a subtree that maximizes the net worth

 net worth = sum of node weights – sum of edge weights

Image credit: Ivana Ljubic, https://homepage.univie.ac.at/ivana.ljubic/research/pcstp/

Filled nodes have 

node weight 0

A feasible but not 

optimal subtree
10



Step 2: Connections with the NWM problem
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temporal subgraph G[i, j]

dense subgraph in G’ is equivalent to NWM subtree in G’c

aggregate graph G’(V, E, f) 

where f(e)=∑Ft(e), t∈[i, j]

converted graph G’c(Vc, Ec) 
with node and edge weights 

connected components 

only considering 

positive weight edges



Step 2: Optimization techniques
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strong merging: merge nodes that belong to the same NWM subtree;

strong pruning: compute an optimal subtree ST on the MST;

bounded probing: optimize ST by probing nodes in bounded distance;



Step 2: Optimization techniques
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strong merging: merge nodes that belong to the same NWM subtree;

strong pruning: compute an optimal subtree ST on the MST;

bounded probing: optimize ST by probing nodes in bounded distance;

Time complexity: O(|V|+|E|+(|Vc|+|Ec|) log|Vc|)
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Experimental setups

 Data sets
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Data sets |V| |E| T adr Description

BJData 82,093 108,238 289 0.44
real-life Beijing road 
network with traffic status

SYNData
50,000 ~ 
400,000

2|V|
200 ~ 
2,000

0.05 ~ 
0.35

synthetic temporal network 
used in [Bogdanov et al. 11]

P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.

 Algorithms
• FDS given time intervals: computeADS & topDown [Bogdanov et al., 11]

• FDS on temporal graphs: FIDES & MEDEN [Bogdanov et al., 11]

• activation density adr: ratio of positive weight edges

 Experimental goals
• verify the rationale behind evolving convergence phenomenon
• test the quality of dense subgraph found by computeADS and FIDES
• test the efficiency of computeADS and FIDES



Verification of ECP

 Proportion of edges that satisfy ECP

• 96% on BJData

• 90% on average on SYNData
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ECP is quite common on both real-life and synthetic temporal graphs.

The characteristics based on ECP work, though ECP is not completely satisfied.

 Edge weights evolve in a convergent way 

• to what degree does ECP hold in temporal graphs?



Algorithms computeADS vs. topDown
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Algorithm computeADS is better than topDown in both quality and efficiency.

SYNDataSYNData

BJData

SYNData

SYNData



Algorithms FIDES vs. MEDEN: quality
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Dense subgraphs found by FIDES are (+0.28%, -0.16%) better than those found 

by MEDEN on (BJData, SYNData).

NA: out of memory

SYNDataSYNData

BJDataSYNData



Algorithms FIDES vs. MEDEN: efficiency
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FIDES is (2,980, 1,079) times faster than MEDEN on (BJData, SYNData).

x: out of memory

SYNDataSYNData

BJDataSYNData
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Summary

 A data-driven approach (big graph friendly)
• identify k time intervals by employing hidden data statistics

• build the connection between FDS and NWM

• three algorithm optimization techniques

 Find dense subgraphs on large temporal graphs
• NP-complete and NP-hard to approximate

• Filter-and-Verification is insufficient for large temporal graphs

 Comparison with the state-of-the-art solution on 
both real-life and synthetic data
• comparable in quality of dense subgraphs found

• three orders of magnitude faster
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Thanks!

Q & A
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Welcome to tomorrow afternoon’s poster session!



Synthetic data generator[Bogdanov et al., 11]

 Random graphs as underlying graphs

 Step 1: all edges in every snapshots have weight -1

 Step 2: randomly activate an edge in a specific snapshot 
(+1), and activate its neighboring edges and the same 
edge in the next snapshots with certain probabilities. Later 
activated edge will perform the same activation process.

 Step 3: repeat step 2 until a prefixed adr is satisfied

2828P. Bogdanov, M. Mongiov, A. K. Singh. Mining heavy subgraphs in time-evolving networks. In ICDM, 2011.


