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Emerging user requirements 

High route planning decision cost 
across multiple transportation modes 

Increasing 
activity radius 

Complex 
travel context 

Diversified 
transportation choices  

Personalized and context-aware intelligent route planning 
Mul$-Modal	Transporta$on	Recommenda$on	



Related Work 

Route	
Recommenda$on	

•  Liu	et	al.[1]	discussed	genera$ng	mul$-modal	shortest	
routes	based	on	heterogeneous	transporta$on	network.	

•  MPR[2]	and	TPMFP[3]	mines	the	most	popular	routes	and	the	
most	frequent	paths	from	massive	trajectories	on	the	road	
network,	respec$vely.	

•  Rogers	et	al.[4]	considers	personal	preference	to	improve	
route	recommenda$ons	quality.	

Network	
Embedding	

•  Metapath2vec[5]	studies	network	embedding	in	
heterogeneous	networks.	

•  Yao	et	al.[6]	and	Wang	et	al.[7]	leverages	network	embedding	
for	region	func$on	profiling.	

•  Feng	et	al.[8]	and	Zhao	et	al.[9]	applies	network	embedding	
on	POI	recommenda$ons.	



Trans2vec: Multi-Modal Transportation Recommendation Architecture 

OD profiling 

POI KG 

User profiling 

Multi-modal data 

User 

Modes 

OD 
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Station service 

User profile 

Context sensing 

Trans2vec 

Multi-modal 
transportation graph 

construction 

Joint representation 
learning  

Online 
recommendations  



Multi-Modal Transportation Graph Construction 

•  A	mul&-modal	 transporta&on	 graph	 is	 a	 heterogeneous	 undirected	weighted	 graph	
𝐺=(𝑉,𝐸),	 where	 𝑉=𝑈∪𝑂𝐷∪𝑀	 is	 a	 set	 of	 heterogeneous	 nodes,	 and	 𝐸=  𝐸↓𝑢𝑚 ∪ 
𝐸↓𝑜𝑑𝑚 ∪ 𝐸↓𝑢𝑢 ∪ 𝐸↓𝑜𝑑𝑜𝑑 	is	a	set	of	heterogeneous	edges	including	user-mode	edges	 
𝐸↓𝑢𝑚 ,	OD-mode	edges	 𝐸↓𝑜𝑑𝑚 ,	user-user	edges	 𝐸↓𝑢𝑢 and	OD-OD	edges	 𝐸↓𝑜𝑑𝑜𝑑 .		
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• Analogize	travel	events	to	sentences	and	random	walks,	in	order	to	learn	
low-dimensional	representa$ons	of	users,	OD	pairs,	and	transport	modes.		

The Base Model 

sigmoid 
Embedding of user Embedding of mode Embedding of OD 

User-mode-OD	
embedding: 

Embedding	with	
Nega$ve	sampling: 



Anchor Embedding 

Pairwise	transport	mode		
relevance	matrix		

Problem 

Ø  there	are	only	several	(e.g.,	5	in	our	case)	

transport	mode	nodes	whereas	there	are	a	

large	number	of	user	nodes	and	OD	nodes. 

ü  each	node	is	assigned	a	discrimina$ve	

embedding	that	reflects	its	inherent	context	

informa$on. 

Solution 



•  The	choice	of	transport	mode	is	highly	
influenced	by	the	characteris$cs	of	users	

•  e.g.,	age,	sex,	mar$al	

• User-user	relevance:	

• User	constraints: 

Modeling User Relevance 

Beyond	travel	preference:		
fined-grained	user	profile	at	Baidu	

User attribute vector 



• Distance	and	travel	purpose	(e.g.,	
home-work,	home-commercial)	are	
among	the	most	influen$al	factors	for	
choosing	transport	modes		

• OD	relevence：	

• OD	constraints: 

Modeling OD Relevance 

OD	heat	map	



Joint Learning & Online Recommendations 

•  Overall	objec$ve:	

	

•  The	score	of	each	mode	is	computed	by:	



Experiments – Objectives & Data Sets 

Table	1.	Data	Sta$s$cs		

•  The	overall	performance	of	
Trans2Vec		

•  The	parameter	sensi$vity		
•  The	transport	mode	relevance		
•  The	robustness	of	Trans2Vec	

Objec$ves	
•  BEIJING	and	SHANGHAI	
•  Produced	based	on	the	map	queries	
and	user	feedbacks	on	the	Baidu	Map,		

•  Time	window	April	1,	2018	-	August	20,	
2018.		

Data	sets	



Experiments – Overall Results  

Table	2.	Overall	performance		

•  Logis$c	regression	
•  L2R[10]	
•  PTE[11]	
•  Metapath2Vec	[5]	

•  NDCG@5,	
•  The	weighted	precision	(PREC)	
•  Recall	(REC)	
•  F1	

Evalua$on	metrics		 Baselines	



Experiments – Parameter Sensitivity 

Effect	of	d	on	BEIJING	 Effect	of	k	on	BEIJING	

Effect	of	𝛽↓1 	on	BEIJING	 Effect	of	𝛽↓2 	on	BEIJING	



Experiments – Robustness Check  

Group	by	users	on	BEIJING	 Group	by	ods	on	BEIJING	

• We	test	the	performance	on	four	subgroups	of	users	(resp.	OD	pairs)		
•  Group	users	(resp.	OD	pairs)	by	K-means	

•  The	performance	is	stable	in	different	groups	of	users	and	OD	pairs.		



%

Faster than bus & drive 

%

Cheaper than taxi 

Multi-Modal Transportation Recommendation on Baidu Map Multi-Modal Transportation Recommendation on Baidu Map 
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